Asynchronous dissipative filter design of nonhomogeneous Markovian jump fuzzy systems via relaxation of triple-parameterized matrix inequalities

2019 ◽  
Vol 478 ◽  
pp. 564-579 ◽  
Author(s):  
Sung Hyun Kim
2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Jidong Wang ◽  
Xiaoping Si ◽  
Kezhen Han

This paper deals with the problem of robust generalizedH2filter design for uncertain discrete-time fuzzy systems with output quantization. Firstly, the outputs of the system are quantized by a memoryless logarithmic quantizer before being transmitted to a filter. Then, attention is focused on the design of a generalizedH2filter to mitigate quantization effects, such that the filtering error systems ensure the robust stability with a prescribed generalizedH2noise attenuation level. Via applying Finsler lemma to introduce some slack variables and using the fuzzy Lyapunov function, sufficient conditions for the existence of a robust generalizedH2filter are expressed in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach.


Author(s):  
Grienggrai Rajchakit ◽  
Ramalingam Sriraman ◽  
Rajendran Samidurai

Abstract This article discusses the dissipativity analysis of stochastic generalized neural network (NN) models with Markovian jump parameters and time-varying delays. In practical applications, most of the systems are subject to stochastic perturbations. As such, this study takes a class of stochastic NN models into account. To undertake this problem, we first construct an appropriate Lyapunov–Krasovskii functional with more system information. Then, by employing effective integral inequalities, we derive several dissipativity and stability criteria in the form of linear matrix inequalities that can be checked by the MATLAB LMI toolbox. Finally, we also present numerical examples to validate the usefulness of the results.


2021 ◽  
Vol 297 ◽  
pp. 01036
Author(s):  
Ben Meziane Khaddouj ◽  
Abderrahim El-Amrani ◽  
Ismail Boumhidi

This paper considers the problem of filter design for two-dimensional (2D) discrete-time non-linear systems in Takagi-Sugeno (T-S) fuzzy mode. The problem to be solved in the paper is to find a H∞ filter model such that the filtering error system is asymptotically stable. A numerical example is employed to illustrate the validity of the proposed methods.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Guilei Chen ◽  
Zhenwei Zhang ◽  
Chao Li ◽  
Dianju Qiao ◽  
Bo Sun

This paper addresses the robust stabilization problem for a class of stochastic Markovian jump systems with distributed delays. The systems under consideration involve Brownian motion, Markov chains, distributed delays, and parameter uncertainties. By an appropriate Lyapunov–Krasovskii functional, the novel delay-dependent stabilization criterion for the stochastic Markovian jump systems is derived in terms of linear matrix inequalities. When given linear matrix inequalities are feasible, an explicit expression of the desired state feedback controller is given. The designed controller, based on the obtained criterion, ensures asymptotically stable in the mean square sense of the resulting closed-loop system. The convenience of the design is greatly enhanced due to the existence of an adjustable parameter in the controller. Finally, a numerical example is exploited to demonstrate the effectiveness of the developed theory.


Author(s):  
Ayyoub Ait Ladel ◽  
Abdellah Benzaouia ◽  
Rachid Outbib ◽  
Mustapha Ouladsine

Abstract This paper addresses the simultaneous fault detection and control (SFDC) issue for switched T-S fuzzy systems with state jumps. The main objective is to design robust detection filters and observer-based controllers to stabilize this system class and, at the same time, detect the presence of faults. Less conservative stability conditions are developed, applying the mode-dependent average dwell time (MDADT) concept, the robust H_{\infty} approach, and the piecewise Lyapunov function (PLF) technique. Based on these conditions, the integrated controller and detector design is formalized in the form of linear matrix inequalities (LMI) instead of bilinear matrix inequalities (BMI). The proposed LMIs determine the controller/ detector gains simultaneously in a single step, thus offering more degrees of freedom in the design. Finally, a numerical example and two real systems examples are studied to prove the applicability and effectiveness of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document