Bilateral filter based total variation regularization for sparse hyperspectral image unmixing

2019 ◽  
Vol 504 ◽  
pp. 334-353 ◽  
Author(s):  
Xiao Li ◽  
Jie Huang ◽  
Liang-Jian Deng ◽  
Ting-Zhu Huang
2020 ◽  
Vol 64 (1) ◽  
pp. 10507-1-10507-9
Author(s):  
Jun Ye ◽  
Xian Zhang

Abstract Hyperspectral images (HSIs) acquired actually often contain various types of noise, such as Gaussian noise, impulse noise, and dead lines. On the basis of land covers, the spectral vectors in HSI can be separated into different classifications, which means the spectral space can be regarded as a union of several low-rank (LR) subspaces rather than a single LR subspace. Recently, LR constraint has been widely applied for denoising HSI. However, those LR-based methods do not constrain the intrinsic structure of spectral space. And these methods cannot make better use of the spatial or spectral features in an HSI cube. In this article, a framework named subspace low-rank representation combined with spatial‐spectral total variation regularization (SLRR-SSTV) is proposed for HSI denoising, where the SLRR is introduced to more precisely satisfy the low-rank property of spectral space, and the SSTV regularization is involved for the spatial and spectral smoothness enhancement. An inexact augmented Lagrange multiplier method by alternative iteration is employed for the SLRR-SSTV model solution. Both simulated and real HSI experiment results demonstrate that the proposed method can achieve a state-of-the-art performance in HSI denoising.


2021 ◽  
Vol 13 (6) ◽  
pp. 1143
Author(s):  
Yinghui Quan ◽  
Yingping Tong ◽  
Wei Feng ◽  
Gabriel Dauphin ◽  
Wenjiang Huang ◽  
...  

The fusion of the hyperspectral image (HSI) and the light detecting and ranging (LiDAR) data has a wide range of applications. This paper proposes a novel feature fusion method for urban area classification, namely the relative total variation structure analysis (RTVSA), to combine various features derived from HSI and LiDAR data. In the feature extraction stage, a variety of high-performance methods including the extended multi-attribute profile, Gabor filter, and local binary pattern are used to extract the features of the input data. The relative total variation is then applied to remove useless texture information of the processed data. Finally, nonparametric weighted feature extraction is adopted to reduce the dimensions. Random forest and convolutional neural networks are utilized to evaluate the fusion images. Experiments conducted on two urban Houston University datasets (including Houston 2012 and the training portion of Houston 2017) demonstrate that the proposed method can extract the structural correlation from heterogeneous data, withstand a noise well, and improve the land cover classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document