Robust distribution-based nonnegative matrix factorizations for dimensionality reduction

2021 ◽  
Vol 552 ◽  
pp. 244-260
Author(s):  
Xinjun Peng ◽  
Dong Xu ◽  
De Chen
2021 ◽  
pp. 1-14
Author(s):  
Javier Blanco-Portals ◽  
Francesca Peiró ◽  
Sònia Estradé

Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new state-of-the-art algorithms for clustering analysis, and dimensionality reduction, respectively, are proposed for the segmentation of core-loss electron energy loss spectroscopy (EELS) spectrum images. The performances of UMAP and HDBSCAN are systematically compared to the other clustering analysis approaches used in EELS in the literature using a known synthetic dataset. Better results are found for these new approaches. Furthermore, UMAP and HDBSCAN are showcased in a real experimental dataset from a core–shell nanoparticle of iron and manganese oxides, as well as the triple combination nonnegative matrix factorization–UMAP–HDBSCAN. The results obtained indicate how the complementary use of different combinations may be beneficial in a real-case scenario to attain a complete picture, as different algorithms highlight different aspects of the dataset studied.


2020 ◽  
Vol 387 ◽  
pp. 78-90
Author(s):  
Yueyang Teng ◽  
Shouliang Qi ◽  
Fangfang Han ◽  
Yudong Yao ◽  
Fenglei Fan ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
G. Casalino ◽  
N. Del Buono ◽  
M. Minervini

We study the problem of detecting and localizing objects in still, gray-scale images making use of the part-based representation provided by nonnegative matrix factorizations. Nonnegative matrix factorization represents an emerging example of subspace methods, which is able to extract interpretable parts from a set of template image objects and then to additively use them for describing individual objects. In this paper, we present a prototype system based on some nonnegative factorization algorithms, which differ in the additional properties added to the nonnegative representation of data, in order to investigate if any additional constraint produces better results in general object detection via nonnegative matrix factorizations.


2017 ◽  
Vol 16 ◽  
pp. 117693511772572 ◽  
Author(s):  
Bisakha Ray ◽  
Wenke Liu ◽  
David Fenyö

The amounts and types of available multimodal tumor data are rapidly increasing, and their integration is critical for fully understanding the underlying cancer biology and personalizing treatment. However, the development of methods for effectively integrating multimodal data in a principled manner is lagging behind our ability to generate the data. In this article, we introduce an extension to a multiview nonnegative matrix factorization algorithm (NNMF) for dimensionality reduction and integration of heterogeneous data types and compare the predictive modeling performance of the method on unimodal and multimodal data. We also present a comparative evaluation of our novel multiview approach and current data integration methods. Our work provides an efficient method to extend an existing dimensionality reduction method. We report rigorous evaluation of the method on large-scale quantitative protein and phosphoprotein tumor data from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) acquired using state-of-the-art liquid chromatography mass spectrometry. Exome sequencing and RNA-Seq data were also available from The Cancer Genome Atlas for the same tumors. For unimodal data, in case of breast cancer, transcript levels were most predictive of estrogen and progesterone receptor status and copy number variation of human epidermal growth factor receptor 2 status. For ovarian and colon cancers, phosphoprotein and protein levels were most predictive of tumor grade and stage and residual tumor, respectively. When multiview NNMF was applied to multimodal data to predict outcomes, the improvement in performance is not overall statistically significant beyond unimodal data, suggesting that proteomics data may contain more predictive information regarding tumor phenotypes than transcript levels, probably due to the fact that proteins are the functional gene products and therefore a more direct measurement of the functional state of the tumor. Here, we have applied our proposed approach to multimodal molecular data for tumors, but it is generally applicable to dimensionality reduction and joint analysis of any type of multimodal data.


Sign in / Sign up

Export Citation Format

Share Document