High-order error function designs to compute time-varying linear matrix equations

Author(s):  
Lin Xiao ◽  
Haiyan Tan ◽  
Jianhua Dai ◽  
Lei Jia ◽  
Wensheng Tang
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Yangfan Wang ◽  
Linshan Wang

This paper studies the problems of global exponential robust stability of high-order hopfield neural networks with time-varying delays. By employing a new Lyapunov-Krasovskii functional and linear matrix inequality, some criteria of global exponential robust stability for the high-order neural networks are established, which are easily verifiable and have a wider adaptive.


Author(s):  
R. Penrose

This paper describes a generalization of the inverse of a non-singular matrix, as the unique solution of a certain set of equations. This generalized inverse exists for any (possibly rectangular) matrix whatsoever with complex elements. It is used here for solving linear matrix equations, and among other applications for finding an expression for the principal idempotent elements of a matrix. Also a new type of spectral decomposition is given.


Sign in / Sign up

Export Citation Format

Share Document