Analysis of ECG signal denoising method based on S-transform

IRBM ◽  
2013 ◽  
Vol 34 (6) ◽  
pp. 362-370 ◽  
Author(s):  
M.K. Das ◽  
S. Ari
2020 ◽  
Author(s):  
Lishen Qiu ◽  
Wenqiang Cai ◽  
Jie Yu ◽  
Jun Zhong ◽  
Yan Wang ◽  
...  

AbstractElectrocardiogram (ECG) is an effective and non-invasive indicator for the detection and prevention of arrhythmia. ECG signals are susceptible to noise contamination, which can lead to errors in ECG interpretation. Therefore, ECG pretreatment is important for accurate analysis. In this paper, a method of noise reduction based on deep learning is proposed. The method is divided into two stages, and two corresponding models are formed. In the first stage, a one-dimensional U-net model is designed for ECG signal denoising to eliminate noise as much as possible. The one-dimensional DR-net model in the second stage is used to reconstruct the ECG signal and to correct the waveform distortion caused by noise removal in the first stage. In this paper, the U-net and the DR-net are constructed by the convolution method to achieve end-to-end mapping from noisy ECG signals to clean ECG signals. The ECG data used in this paper are from CPSC2018, and the noise signal is from MIT-BIH Noise Stress Test Database (NSTDB). In the experiment, the improvement in the signal-to-noise ratio SNRimp, the root mean square error decrease RMSEde, and the correlation coefficient P, are used to evaluate the performance of the network. This two-stage method is compared with FCN and U-net alone. The experimental results show that the two-stage noise reduction method can eliminate complex noise in the ECG signal while retaining the characteristic shape of the ECG signal. According to the results, we believe that the proposed method has a good application prospect in clinical practice.


2014 ◽  
Vol 651-653 ◽  
pp. 2090-2093 ◽  
Author(s):  
Shou Cheng Zhang ◽  
Li Li Sui

In non-parametric signal denoising area, empirical mode decomposition is potentially useful. In this paper, the wavelet thresholding principle is directly used in EMD-based denoising. The basic principle of the method is to reconstruct the signal with IMFs previously thresholded. A novel threshold function is proposed to improve denoising effect by exploiting the special characteristics of the hard and soft thresholding method. The denoising method is validated through experiments on the “Doppler” signal and a real ECG signal from MIT-BIH databases corrupted by additive white Gaussian random noise. The simulations show that the proposed EMD-based method provides very good results for denoising.


2013 ◽  
Vol 25 (04) ◽  
pp. 1350042 ◽  
Author(s):  
Ying Yang ◽  
Yusen Wei

The random interpolation average (RIA) is a simple yet good denoising method. It firstly employed several times of random interpolations to a noisy signal, then applied the wavelet transform (WT) denoising to each interpolated signal and averaged all of the denoised signals to finish the denoising process. In this paper, multiple wavelet bases and the level-dependent threshold estimator were used in the RIA scheme so that it can be more suitable for the electrocardiogram (ECG) signal denoising. The synthetic ECG signal, real ECG signal and four types of noise were used to perform comparison experiments. The results show that the proposed method can provide the best signal to noise ratio (SNR) improvement in the deoising applications of the synthetic ECG signal and the real ECG signals. For the real ECG signals denoising, the average SNR improvement is 5.886 dB, while the result of the RIA scheme with single wavelet basis (RIAS), the fully translation-invariant [TI (fully)] and the WT denoising using hard thresholding [WT (hard)] are 5.577, 5.274 and 3.484 dB, respectively.


Author(s):  
Ashish Kumar ◽  
Harshit Tomar ◽  
Virender Kumar Mehla ◽  
Rama Komaragiri ◽  
Manjeet Kumar

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dengyong Zhang ◽  
Shanshan Wang ◽  
Feng Li ◽  
Shang Tian ◽  
Jin Wang ◽  
...  

The electrocardiogram (ECG) signal can easily be affected by various types of noises while being recorded, which decreases the accuracy of subsequent diagnosis. Therefore, the efficient denoising of ECG signals has become an important research topic. In the paper, we proposed an efficient ECG denoising approach based on empirical mode decomposition (EMD), sample entropy, and improved threshold function. This method can better remove the noise of ECG signals and provide better diagnosis service for the computer-based automatic medical system. The proposed work includes three stages of analysis: (1) EMD is used to decompose the signal into finite intrinsic mode functions (IMFs), and according to the sample entropy of each order of IMF following EMD, the order of IMFs denoised is determined; (2) the new threshold function is adopted to denoise these IMFs after the order of IMFs denoised is determined; and (3) the signal is reconstructed and smoothed. The proposed method solves the shortcoming of discarding the first-order IMF directly in traditional EMD denoising and proposes a new threshold denoising function to improve the traditional soft and hard threshold functions. We further conduct simulation experiments of ECG signals from the MIT-BIH database, in which three types of noise are simulated: white Gaussian noise, electromyogram (EMG), and power line interference. The experimental results show that the proposed method is robust to a variety of noise types. Moreover, we analyze the effectiveness of the proposed method under different input SNR with reference to improving SNR ( SNR imp ) and mean square error ( MSE ), then compare the denoising algorithm proposed in this paper with previous ECG signal denoising techniques. The results demonstrate that the proposed method has a higher SNR imp and a lower MSE . Qualitative and quantitative studies demonstrate that the proposed algorithm is a good ECG signal denoising method.


2021 ◽  
Vol 11 (4) ◽  
pp. 1591
Author(s):  
Ruixia Liu ◽  
Minglei Shu ◽  
Changfang Chen

The electrocardiogram (ECG) is widely used for the diagnosis of heart diseases. However, ECG signals are easily contaminated by different noises. This paper presents efficient denoising and compressed sensing (CS) schemes for ECG signals based on basis pursuit (BP). In the process of signal denoising and reconstruction, the low-pass filtering method and alternating direction method of multipliers (ADMM) optimization algorithm are used. This method introduces dual variables, adds a secondary penalty term, and reduces constraint conditions through alternate optimization to optimize the original variable and the dual variable at the same time. This algorithm is able to remove both baseline wander and Gaussian white noise. The effectiveness of the algorithm is validated through the records of the MIT-BIH arrhythmia database. The simulations show that the proposed ADMM-based method performs better in ECG denoising. Furthermore, this algorithm keeps the details of the ECG signal in reconstruction and achieves higher signal-to-noise ratio (SNR) and smaller mean square error (MSE).


Sign in / Sign up

Export Citation Format

Share Document