Semi-Automated Segmentation of Single and Multiple Tumors in Liver CT Images Using Entropy-Based Fuzzy Region Growing

IRBM ◽  
2017 ◽  
Vol 38 (2) ◽  
pp. 98-108 ◽  
Author(s):  
A. Baâzaoui ◽  
W. Barhoumi ◽  
A. Ahmed ◽  
E. Zagrouba
2021 ◽  
Vol 36 (9) ◽  
pp. 1294-1304
Author(s):  
Li-juan ZHANG ◽  
◽  
Run ZHANG ◽  
Dong-ming LI ◽  
Yang LI ◽  
...  

2014 ◽  
Vol 644-650 ◽  
pp. 4233-4236
Author(s):  
Zhen You Zhang ◽  
Guo Huan Lou

Segmentation algorithm of CT Image is discussed in this paper. Dynamic relative fuzzy region growing algorithm is used for CT. At the beginning of the segmentation, the confidence interval region growing algorithm is used. The overlapping parts in the initial segmentation result is segmented again with the improved fuzzy connected, and then determine which region the overlapping parts belong to. Thus, the final segmentation result can be obtained. Since the algorithm contains the advantages of region growing algorithm, fuzzy connected algorithm and the region competition, the runtime of segmentation is greatly reduced and better experimental results are obtained.


2018 ◽  
Vol 102 ◽  
pp. 102-108 ◽  
Author(s):  
Usman Mahmood ◽  
Natally Horvat ◽  
Joao Vicente Horvat ◽  
Davinia Ryan ◽  
Yiming Gao ◽  
...  

2018 ◽  
Vol 7 (2.6) ◽  
pp. 306
Author(s):  
Aravinda H.L ◽  
M.V Sudhamani

The major reasons for liver carcinoma are cirrhosis and hepatitis.  In order to  identify carcinoma in the liver abdominal CT images are used. From abdominal CT images, segmentation of liver portion using adaptive region growing, tumor segmentation from extracted liver using Simple Linear Iterative Clustering is already implemented. In this paper, classification of tumors as benign or malignant is accomplished using Rough-set classifier based on texture feature extracted using Average Correction Higher Order Local Autocorrelation Coefficients and Legendre moments. Classification accuracy achieved in proposed scheme is 90%. The results obtained are promising and have been compared with existing methods.


2014 ◽  
Author(s):  
Joshua K. Y. Swee ◽  
Clare Sheridan ◽  
Elza de Bruin ◽  
Julian Downward ◽  
Francois Lassailly ◽  
...  

2020 ◽  
Author(s):  
Yang Liu ◽  
Lu Meng ◽  
Jianping Zhong

Abstract Background: For deep learning, the size of the dataset greatly affects the final training effect. However, in the field of computer-aided diagnosis, medical image datasets are often limited and even scarce.Methods: We aim to synthesize medical images and enlarge the size of the medical image dataset. In the present study, we synthesized the liver CT images with a tumor based on the mask attention generative adversarial network (MAGAN). We masked the pixels of the liver tumor in the image as the attention map. And both the original image and attention map were loaded into the generator network to obtain the synthesized images. Then the original images, the attention map, and the synthesized images were all loaded into the discriminator network to determine if the synthesized images were real or fake. Finally, we can use the generator network to synthesize liver CT images with a tumor.Results: The experiments showed that our method outperformed the other state-of-the-art methods, and can achieve a mean peak signal-to-noise ratio (PSNR) as 64.72dB.Conclusions: All these results indicated that our method can synthesize liver CT images with tumor, and build large medical image dataset, which may facilitate the progress of medical image analysis and computer-aided diagnosis.


Sign in / Sign up

Export Citation Format

Share Document