scholarly journals Kir6.2-deficient mice develop somatosensory dysfunction and axonal loss in the peripheral nerves.

iScience ◽  
2021 ◽  
pp. 103609
Author(s):  
Hiromi Nakai-Shimoda ◽  
Tatsuhito Himeno ◽  
Tetsuji Okawa ◽  
Emiri Miura-Yura ◽  
Sachiko Sasajima ◽  
...  
1995 ◽  
Vol 11 (3) ◽  
pp. 281-286 ◽  
Author(s):  
Rudolf Martini ◽  
Jürgen Zielasek ◽  
Klaus V. Toyka ◽  
K. Peter Giese ◽  
Melitta Schachner

Glia ◽  
1999 ◽  
Vol 28 (3) ◽  
pp. 256-264 ◽  
Author(s):  
Stefano Carenini ◽  
Dirk Neuberg ◽  
Melitta Schachner ◽  
Ueli Suter ◽  
Rudolf Martini

2004 ◽  
Vol 24 (9) ◽  
pp. 3949-3956 ◽  
Author(s):  
Tomohiko Okuda ◽  
Yujiro Higashi ◽  
Koichi Kokame ◽  
Chihiro Tanaka ◽  
Hisato Kondoh ◽  
...  

ABSTRACT NDRG1 is an intracellular protein that is induced under a number of stress and pathological conditions, and it is thought to be associated with cell growth and differentiation. Recently, human NDRG1 was identified as a gene responsible for hereditary motor and sensory neuropathy-Lom (classified as Charcot-Marie-Tooth disease type 4D), which is characterized by early-onset peripheral neuropathy, leading to severe disability in adulthood. In this study, we generated mice lacking Ndrg1 to analyze its function and elucidate the pathogenesis of Charcot-Marie-Tooth disease type 4D. Histological analysis showed that the sciatic nerve of Ndrg1-deficient mice degenerated with demyelination at about 5 weeks of age. However, myelination of Schwann cells in the sciatic nerve was normal for 2 weeks after birth. Ndrg1-deficient mice showed muscle weakness, especially in the hind limbs, but complicated motor skills were retained. In wild-type mice, NDRG1 was abundantly expressed in the cytoplasm of Schwann cells rather than the myelin sheath. These results indicate that NDRG1 deficiency leads to Schwann cell dysfunction, suggesting that NDRG1 is essential for maintenance of the myelin sheaths in peripheral nerves. These mice will be used for future analyses of the mechanisms of myelin maintenance.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ye Tao ◽  
Fang Wang ◽  
Zhaohui Xu ◽  
Xianfu Lu ◽  
Yanqing Yang ◽  
...  

AbstractWallerian degeneration (WD) involves the recruitment of macrophages for debris clearance and nerve regeneration, and the cause of the foamy macrophages that are frequently observed in peripheral transection injuries is unknown. Recent studies indicated that these foamy cells are generated by gasdermin D (GSDMD) via membrane perforation. However, whether these foamy cells are pyroptotic macrophages and whether their cell death elicits immunogenicity in peripheral nerve regeneration (PNR) remain unknown. Therefore, we used GSDMD-deficient mice and mice with deficiencies in other canonical inflammasomes to establish a C57BL/6 J mouse model of sciatic nerve transection and microanastomosis (SNTM) and evaluate the role of GSDMD-executed pyroptosis in PNR. In our study, the GSDMD−/− mice with SNTM showed a significantly diminished number of foamy cells, better axon regeneration, and a favorable functional recovery, whereas irregular axons or gaps in the fibers were found in the wild-type (WT) mice with SNTM. Furthermore, GSDMD activation in the SNTM model was dependent on the NLRP3 inflammasome and caspase-1 activation, and GSDMD-executed pyroptosis resulted in a proinflammatory environment that polarized monocytes/macrophages toward the M1 (detrimental) but not the M2 (beneficial) phenotype. In contrast, depletion of GSDMD reversed the proinflammatory microenvironment and facilitated M2 polarization. Our results suggested that inhibition of GSDMD may be a potential treatment option to promote PNR.


2018 ◽  
Vol 9 ◽  
Author(s):  
Nellie A. Martin ◽  
Viktor Molnar ◽  
Gabor T. Szilagyi ◽  
Maria L. Elkjaer ◽  
Arkadiusz Nawrocki ◽  
...  

2011 ◽  
Vol 26 (3) ◽  
pp. 1064-1076 ◽  
Author(s):  
Bartomeu Colom ◽  
Yannick Poitelon ◽  
Wenlong Huang ◽  
Abigail Woodfin ◽  
Sharon Averill ◽  
...  

Author(s):  
D. M. DePace

The majority of blood vessels in the superior cervical ganglion possess a continuous endothelium with tight junctions. These same features have been associated with the blood brain barrier of the central nervous system and peripheral nerves. These vessels may perform a barrier function between the capillary circulation and the superior cervical ganglion. The permeability of the blood vessels in the superior cervical ganglion of the rat was tested by intravenous injection of horseradish peroxidase (HRP). Three experimental groups of four animals each were given intravenous HRP (Sigma Type II) in a dosage of.08 to.15 mg/gm body weight in.5 ml of.85% saline. The animals were sacrificed at five, ten or 15 minutes following administration of the tracer. Superior cervical ganglia were quickly removed and fixed by immersion in 2.5% glutaraldehyde in Sorenson's.1M phosphate buffer, pH 7.4. Three control animals received,5ml of saline without HRP. These were sacrificed on the same time schedule. Tissues from experimental and control animals were reacted for peroxidase activity and then processed for routine transmission electron microscopy.


Author(s):  
H. Nishimura ◽  
R Nishimura ◽  
D.L. Adelson ◽  
A.E. Michaelska ◽  
K.H.A. Choo ◽  
...  

Metallothionein (MT), a cysteine-rich heavy metal binding protein, has several isoforms designated from I to IV. Its major isoforms, I and II, can be induced by heavy metals like cadmium (Cd) and, are present in various organs of man and animals. Rodent testes are a critical organ to Cd and it is still a controversial matter whether MT exists in the testis although it is clear that MT is not induced by Cd in this tissue. MT-IV mRNA was found to localize within tongue squamous epithelium. Whether MT-III is present mainly glial cells or neurons has become a debatable topic. In the present study, we have utilized MT-I and II gene targeted mice and compared MT localization in various tissues from both MT-deficient mice and C57Black/6J mice (C57BL) which were used as an MT-positive control. For MT immunostaining, we have used rabbit antiserum against rat MT-I known to cross-react with mammalian MT-I and II and human MT-III. Immunohistochemical staining was conducted by the method described in the previous paper with a slight modification after the tissues were fixed in HistoChoice and embedded in paraffin.


Sign in / Sign up

Export Citation Format

Share Document