sciatic nerve transection
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 25)

H-INDEX

32
(FIVE YEARS 3)

Author(s):  
Marie C Walters ◽  
David R Ladle

Reflex abnormalities mediated by proprioceptive sensory neurons after peripheral nerve injury (PNI) can limit functional improvement, leaving patients with disability that affects their quality of life. We examined post-injury calcium transients in a subpopulation of DRG neurons consisting primarily of proprioceptors to determine whether alterations in calcium homeostasis are present in proprioceptors, as has been documented in other DRG neurons after PNI. Using transgenic mice, we restricted expression of the calcium indicator GCaMP6s to DRG neurons containing parvalbumin (PV). Mice of both sexes were randomly assigned to sham, sciatic nerve crush, or sciatic nerve transection and resuture conditions. Calcium transients were recorded from ex-vivo preparations of animals at one of three post-surgery time points: 1-3 days, 7-11 days, and after 60 days of recovery. Results demonstrated that the post-PNI calcium transients of PV DRG neurons are significantly different than sham. Abnormalities were not present during the acute response to injury (1-3 days), but transients were significantly different than sham at the recovery stage where axon regeneration is thought to be underway (7-11 days). During late-stage recovery (60 days post-injury), disturbances in the decay time course of calcium transients in transection animals persisted, whereas parameters of transients from crush animals returned to normal. These findings identify a deficit in calcium homeostasis in proprioceptive neurons, which may contribute to the failure to fully recover proprioceptive reflexes after PNI. Significant differences in the calcium transients of crush versus transection animals after reinnervation illustrate calcium homeostasis alterations are distinctive to injury type.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1438
Author(s):  
Yaswanth Kuthati ◽  
Vaikar Navakanth Rao ◽  
Prabhakar Busa ◽  
Chih-Shung Wong

Neuropathic pain (NP), is a chronic pain resulting from nerve injury, with limited treatment options. Teneligliptin (TEN) is a dipeptidyl peptidase-4 inhibitor (DPP-4i) approved to treat type 2 diabetes. DPP-4is prevent the degradation of the incretin hormone glucagon-like peptide 1 (GLP-1) and prolong its circulation. Apart from glycemic control, GLP-1 is known to have antinociceptive and anti-inflammatory effects. Herein, we investigated the antinociceptive properties of TEN on acute pain, and partial sciatic nerve transection (PSNT)-induced NP in Wistar rats. Seven days post PSNT, allodynia and hyperalgesia were confirmed as NP, and intrathecal (i.t) catheters were implanted and connected to an osmotic pump for the vehicle (1 μL/h) or TEN (5 μg/1 μL/h) or TEN (5 μg) + GLP-1R antagonist Exendin-3 (9–39) amide (EXE) 0.1 μg/1 μL/h infusion. The tail-flick response, mechanical allodynia, and thermal hyperalgesia were measured for 7 more days. On day 14, the dorsal horn was harvested and used for Western blotting and immunofluorescence assays. The results showed that TEN had mild antinociceptive effects against acute pain but remarkable analgesic effects against NP. Furthermore, co-infusion of GLP-1R antagonist EXE with TEN partially reversed allodynia but not tail-flick latency. Immunofluorescence examination of the spinal cord revealed that TEN decreased the immunoreactivity of glial fibrillary acidic protein (GFAP). Taken together, our findings suggest that TEN is efficient in attenuation of PSNT-induced NP. Hence, the pleiotropic effects of TEN open a new avenue for NP management.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ye Tao ◽  
Fang Wang ◽  
Zhaohui Xu ◽  
Xianfu Lu ◽  
Yanqing Yang ◽  
...  

AbstractWallerian degeneration (WD) involves the recruitment of macrophages for debris clearance and nerve regeneration, and the cause of the foamy macrophages that are frequently observed in peripheral transection injuries is unknown. Recent studies indicated that these foamy cells are generated by gasdermin D (GSDMD) via membrane perforation. However, whether these foamy cells are pyroptotic macrophages and whether their cell death elicits immunogenicity in peripheral nerve regeneration (PNR) remain unknown. Therefore, we used GSDMD-deficient mice and mice with deficiencies in other canonical inflammasomes to establish a C57BL/6 J mouse model of sciatic nerve transection and microanastomosis (SNTM) and evaluate the role of GSDMD-executed pyroptosis in PNR. In our study, the GSDMD−/− mice with SNTM showed a significantly diminished number of foamy cells, better axon regeneration, and a favorable functional recovery, whereas irregular axons or gaps in the fibers were found in the wild-type (WT) mice with SNTM. Furthermore, GSDMD activation in the SNTM model was dependent on the NLRP3 inflammasome and caspase-1 activation, and GSDMD-executed pyroptosis resulted in a proinflammatory environment that polarized monocytes/macrophages toward the M1 (detrimental) but not the M2 (beneficial) phenotype. In contrast, depletion of GSDMD reversed the proinflammatory microenvironment and facilitated M2 polarization. Our results suggested that inhibition of GSDMD may be a potential treatment option to promote PNR.


2021 ◽  
Vol 108 (Supplement_2) ◽  
Author(s):  
E Johnston ◽  
K McGarry ◽  
S Martin ◽  
H Lewis

Abstract Introduction Complete transection of the sciatic nerve following a closed femoral fracture is exceedingly uncommon. Delayed diagnosis may result due to this unrecognised injury pattern. Case Description: An 18-year-old male motorcyclist was referred following a significantly displaced closed, femoral fracture. The patient was sedated at the scene and transferred to theatre for definitive fixation, where an open reduction was performed via an anterior approach. Symptoms of paresthesia and weakness were reported immediately postoperatively, and formal neurological examination prompted an emergency MRI. On this basis, the patient was transferred to plastics and underwent surgical exploration, where complete transection of the sciatic nerve was identified just proximal to the bifurcation into the common peroneal and tibial nerve. A nerve gap of five centimetres was identified requiring reconstruction with grouped fascicular sural nerve grafts. Discussion: Complete transection of the sciatic nerve is a devastating injury that compromises the function of the posterior compartment of the thigh and all motor function below the knee. To our knowledge, reports of complete sciatic nerve transection secondary to a closed fracture of the femoral shaft are extremely rare in the pertinent literature, with only two other cases reported to date.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yang Zhang ◽  
Xiang Xu ◽  
Yuxin Tong ◽  
Xijie Zhou ◽  
Jian Du ◽  
...  

Abstract Background Severe peripheral nerve injury significantly affects patients’ quality of life and induces neuropathic pain. Neural crest stem cells (NCSCs) exhibit several attractive characteristics for cell-based therapies following peripheral nerve injury. Here, we investigate the therapeutic effect of NCSC therapy and associated changes in the spinal cord in a sciatic nerve transection (SNT) model. Methods Complex sciatic nerve gap injuries in rats were repaired with cell-free and cell-laden nerve scaffolds for 12 weeks (scaffold and NCSC groups, respectively). Catwalk gait analysis was used to assess the motor function recovery. The mechanical withdrawal threshold and thermal withdrawal latency were used to assess the development of neuropathic pain. Activation of glial cells was examined by immunofluorescence analyses. Spinal levels of extracellular signal-regulated kinase (ERK), NF-κB P65, brain-derived neurotrophic factor (BDNF), growth-associated protein (GAP)-43, calcitonin gene-related peptide (CGRP), and inflammation factors were calculated by western blot analysis. Results Catwalk gait analysis showed that animals in the NCSC group exhibited a higher stand index and Max intensity At (%) relative to those that received the cell-free scaffold (scaffold group) (p < 0.05). The mechanical and thermal allodynia in the medial-plantar surface of the ipsilateral hind paw were significantly relieved in the NCSC group. Sunitinib (SNT)-induced upregulation of glial fibrillary acidic protein (GFAP) (astrocyte) and ionized calcium-binding adaptor molecule 1 (Iba-1) (microglia) in the ipsilateral L4–5 dorsal and ventral horn relative to the contralateral side. Immunofluorescence analyses revealed decreased astrocyte and microglia activation. Activation of ERK and NF-κB signals and expression of transient receptor potential vanilloid 1 (TRPV1) expression were downregulated. Conclusion NCSC-laden nerve scaffolds mitigated SNT-induced neuropathic pain and improved motor function recovery after sciatic nerve repair. NCSCs also protected the spinal cord from SNT-induced glial activation and central sensitization.


2021 ◽  
Vol 10 (1) ◽  
pp. 53-64
Author(s):  
Farshad Moharrami Kasmaie ◽  
Fatemeh Zamani ◽  
Sara Sayad-Fathi ◽  
Arash Zaminy

Sign in / Sign up

Export Citation Format

Share Document