Estimation of forest canopy structural parameters using kernel-driven bi-directional reflectance model based multi-angular vegetation indices

Author(s):  
Ram C. Sharma ◽  
Koji Kajiwara ◽  
Yoshiaki Honda
2010 ◽  
Vol 114 (2) ◽  
pp. 265-285 ◽  
Author(s):  
Feng Zhao ◽  
Xingfa Gu ◽  
Wout Verhoef ◽  
Qiao Wang ◽  
Tao Yu ◽  
...  

Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1324
Author(s):  
Xi Peng ◽  
Anjiu Zhao ◽  
Yongfu Chen ◽  
Qiao Chen ◽  
Haodong Liu ◽  
...  

Knowledge of forest structure is vital for sustainable forest management decisions. Terrestrial laser scanning cannot describe the canopy trees in a large area, and it is unclear whether unmanned aerial vehicle-light detection and ranging (UAV-LiDAR) data have the ability to capture the forest canopy structural parameters in tropical forests. In this study, we estimated five forest canopy structures (stand density (N), basic area (G), above-ground biomass (AGB), Lorey’s mean height (HL), and under-crown height (hT)) with four modeling algorithms (linear regression (LR), bagged tree (BT), support vector regression (SVR), and random forest (RF)) based on UAV-LiDAR data and 60 sample plot data from tropical forests in Hainan and determined the optimal algorithms for the five canopy structures by comparing the performance of the four algorithms. First, we defined the canopy tree as a tree with a height ≥70% HL. Then, UAV-LiDAR metrics were calculated, and the LiDAR metrics were screened by recursive feature elimination (RFE). Finally, a prediction model of the five forest canopy structural parameters was established by the four algorithms, and the results were compared. The metrics’ screening results show that the most important LiDAR indexes for estimating HL, AGB, and hT are the leaf area index and some height metrics, while the most important indexes for estimating N and G are the kurtosis of heights and the coefficient of variation of height. The relative root mean squared error (rRMSE) of five structure parameters showed the following: when modeling HL, the rRMSEs (10.60%–12.05%) obtained by the four algorithms showed little difference; when N was modeled, BT, RF, and SVR had lower rRMSEs (26.76%–27.44%); when G was modeled, the rRMSEs of RF and SVR (15.37%–15.87%) were lower; when hT was modeled, BT, RF, and SVR had lower rRMSEs (10.24%–11.07%); when AGB was modeled, RF had the lowest rRMSE (26.75%). Our results will help facilitate choosing LiDAR indexes and modeling algorithms for tropical forest resource inventories.


2017 ◽  
Vol 5 (2) ◽  
pp. T173-T183 ◽  
Author(s):  
Huaimin Dong ◽  
Jianmeng Sun ◽  
Yafen Li ◽  
Likai Cui ◽  
Weichao Yan ◽  
...  

Carbonate reservoirs have complicated pore structure and reserving space, and the pore size distribution ranges are very large. Pore structure distributions represent a bimodal or trimodal state, which is also accompanied with an obviously non-Archie phenomenon. Double- and triple-porosity conductivity models based on the classification of pore dimensions were of a good coincidence with the non-Archie behavior. We have adopted digital core technology to verify the carbonate double-porosity conductivity model. Also, many rock-physical experiments and numerical simulations were performed. Through CT scanning under appropriate resolutions, macro- and micropore digital cores, which could respectively characterize the different pores, were constructed for the carbonate samples. Then the superposition method was further applied to construct the superposition digital cores, which can characterize different pores simultaneously. To quantitatively analyze and compare the effect of basic structural parameters to different digital cores, the pore network model was extracted using the Lee-Kashyap-Chu algorithm to furtherly verify the differences between scanning resolutions and pore selection characterization. In terms of qualitative validation of the double-pore conductivity model, the electrical characteristics and resistivity index (RI) under different saturations were simulated using the finite-element method and the lattice Boltzmann method. The RI curves indicated that the calculation results from the double-pore conductivity model based on a digital core are coincident with the numerical simulation results. In other words, the digital core technology can verify the double-porosity conductivity model effectively.


1997 ◽  
Vol 11 (1) ◽  
pp. 101-105 ◽  
Author(s):  
L. M. KRUGER ◽  
J. J. MIDGLEY ◽  
R. M. COWLING

2020 ◽  
Author(s):  
Feng Qiu ◽  
Qian Zhang

<p>Forest canopy reflectance varies with solar and observation geometries and shows distinct anisotropic characteristics. The bidirectional reflectance distribution function (BRDF) of forest canopies is influenced by canopy structure, leaf biochemistry and background reflectance. Multi-angular remote sensing observations of forest canopies provide much more information about canopy structure and background information compared with the nadir observations. The development of unmanned aerial vehicle (UAV) provides great opportunities for multi-angular observations in forests. We developed a solid method to obtained bidirectional reflectance of forest canopies based on a hyperspectral UAV imaging platform in this study. With this multi-angular observation method, we obtained canopy reflectance images with the view zenith angle (VZA) varying from 60° (forward) to 60° (backward) at fixed interval (10°), as well as the hotspot and darkspot images in the principle plane in conifer forests. Since the single pixel with very high spatial resolution (around 10 cm) in the UAV images are not representative for the study of the whole forest canopy, several pixels in the central of each images were selected and averaged to determine the canopy reflectance. Variations of the averaged reflectance with ground distance represented by the selected pixels were analyzed and the optimum ground distance for study the multi-angular forest canopy reflectance was determined. The observed canopy reflectance peaks at the hotspot and clear images of the hotspot are observed. The sensitivities of canopy reflectance to VZAs vary with spectral bands. The reflectance at red bands near 680 nm are most sensitive to VZA. Some common used vegetation indices, such as NDVI, EVI, MTCI, PRI, also vary greatly with VZAs and demonstrate different spatial distribution patterns. The observations fit well with the 4-Scale geometric-optical model simulations. The multi-angular observation methods based on UAV platform have the advantages of efficient and effective in multi-angular observation with higher flexibility in VZA adjustment and lower cost, compared with the airborne or spaceborne sensors. This multi-angular observation method is very useful for study the BRDF and canopy structural and biochemical characteristics of forests and has great potential in forestry and ecological studies.</p>


Sign in / Sign up

Export Citation Format

Share Document