A local descriptor based registration method for multispectral remote sensing images with non-linear intensity differences

Author(s):  
Yuanxin Ye ◽  
Jie Shan
Author(s):  
P. L. Arun ◽  
R Mathusoothana S Kumar

AbstractOcclusion removal is a significant problem to be resolved in a remote traffic control system to enhance road safety. However, the conventional techniques do not recognize traffic signs well due to the vehicles are occluded. Besides occlusion removal was not performed in existing techniques with a less amount of time. In order to overcome such limitations, Non-linear Gaussian Bilateral Filtered Sorenson–Dice Exemplar Image Inpainting Based Bayes Conditional Probability (NGBFSEII-BCP) Method is proposed. Initially, a number of remote sensing images are taken as input from Highway Traffic Dataset. Then, the NGBFSEII-BCP method applies the Non-Linear Gaussian Bilateral Filtering (NGBF) algorithm for removing the noise pixels in input images. After preprocessing, the NGBFSEII-BCP method is used to remove the occlusion in the input images. Finally, NGBFSEII-BCP Method applies Bayes conditional probability to find operation status and thereby gets higher road safety using remote sensing images. The technique conducts the simulation evaluation using metrics such as peak signal to noise ratio, computational time, and detection accuracy. The simulation result illustrates that the NGBFSEII-BCP Method increases the detection accuracy by 20% and reduces the computation time by 32% as compared to state-of-the-art works.


2021 ◽  
Vol 13 (17) ◽  
pp. 3425
Author(s):  
Xin Zhao ◽  
Hui Li ◽  
Ping Wang ◽  
Linhai Jing

Accurate registration for multisource high-resolution remote sensing images is an essential step for various remote sensing applications. Due to the complexity of the feature and texture information of high-resolution remote sensing images, especially for images covering earthquake disasters, feature-based image registration methods need a more helpful feature descriptor to improve the accuracy. However, traditional image registration methods that only use local features at low levels have difficulty representing the features of the matching points. To improve the accuracy of matching features for multisource high-resolution remote sensing images, an image registration method based on a deep residual network (ResNet) and scale-invariant feature transform (SIFT) was proposed. It used the fusion of SIFT features and ResNet features on the basis of the traditional algorithm to achieve image registration. The proposed method consists of two parts: model construction and training and image registration using a combination of SIFT and ResNet34 features. First, a registration sample set constructed from high-resolution satellite remote sensing images was used to fine-tune the network to obtain the ResNet model. Then, for the image to be registered, the Shi_Tomas algorithm and the combination of SIFT and ResNet features were used for feature extraction to complete the image registration. Considering the difference in image sizes and scenes, five pairs of images were used to conduct experiments to verify the effectiveness of the method in different practical applications. The experimental results showed that the proposed method can achieve higher accuracies and more tie points than traditional feature-based methods.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012064
Author(s):  
P. Lokeshwara Reddy ◽  
Santosh Pawar ◽  
S.L. Prathapa Reddy

Abstract With the advent of sensor technology, the exertion of multispectral image (MSI) is comely omnipresent. Denoising is an essential quest in multispectral image processing which further improves recital of unmixing, classification and supplementary ensuing praxis. Explication and ocular analysis are essential to extricate data from remote sensing images for broad realm of supplications. This paper describes curvelet transform based denoising of multispectral remote sensing images. The implementation of curvelet transform is done by using both wrapping function and unequally spaced fast Fourier transform (USFFT) and they diverge in selection of spatial grid which is used to construe curvelets at every orientation and scale. The coefficients of curvelets are docket by a scaling factor, angle and spatial location criterion. This paper crisps on denoising of Linear Imaging Self Scanning Sensor (LISS) III images. The proposed denoising approach has also been collated with some existing schemes for assessment. The efficacy of proposed approach is analyzed with calculation of facet matrices such as Peak signal to noise ratio and Structural similarity at distinct variance of noise..


Sign in / Sign up

Export Citation Format

Share Document