scholarly journals Robust detection of non-overlapping ellipses from points with applications to circular target extraction in images and cylinder detection in point clouds

2021 ◽  
Vol 176 ◽  
pp. 83-108 ◽  
Author(s):  
Reza Maalek ◽  
Derek D. Lichti
2020 ◽  
Vol 100 ◽  
pp. 107161 ◽  
Author(s):  
Abner M.C. Araújo ◽  
Manuel M. Oliveira

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7630
Author(s):  
Saed Moradi ◽  
Denis Laurendeau ◽  
Clement Gosselin

Most man-made objects are composed of a few basic geometric primitives (GPs) such as spheres, cylinders, planes, ellipsoids, or cones. Thus, the object recognition problem can be considered as one of geometric primitives extraction. Among the different geometric primitives, cylinders are the most frequently used GPs in real-world scenes. Therefore, cylinder detection and extraction are of great importance in 3D computer vision. Despite the rapid progress of cylinder detection algorithms, there are still two open problems in this area. First, a robust strategy is needed for the initial sample selection component of the cylinder extraction module. Second, detecting multiple cylinders simultaneously has not yet been investigated in depth. In this paper, a robust solution is provided to address these problems. The proposed solution is divided into three sub-modules. The first sub-module is a fast and accurate normal vector estimation algorithm from raw depth images. With the estimation method, a closed-form solution is provided for computing the normal vector at each point. The second sub-module benefits from the maximally stable extremal regions (MSER) feature detector to simultaneously detect cylinders present in the scene. Finally, the detected cylinders are extracted using the proposed cylinder extraction algorithm. Quantitative and qualitative results show that the proposed algorithm outperforms the baseline algorithms in each of the following areas: normal estimation, cylinder detection, and cylinder extraction.


Author(s):  
Y. Dehbi ◽  
A. Henn ◽  
G. Gröger ◽  
V. Stroh ◽  
L. Plümer

<p><strong>Abstract.</strong> 3D city models in Level-of-Detail 2 (LoD2) are nowadays inevitable for many applications such as solar radiation calculation and energy demand estimation. City-wide models are required which can solely be acquired by fully automatic approaches. In this paper we propose a novel method for the 3D-reconstruction of LoD2 buildings with structured roofs and dormers from LIDAR data. We apply a hybrid strategy which combines the strengths of top-down and bottom-up methods. The main contribution is the introduction of an <i>active sampling</i> strategy which applies a cascade of filters focusing on promising samples in an early stage and avoiding the pitfalls of RANSAC based approaches. Such filters are based on prior knowledge represented by (non-parametric) density distributions. Samples are pairs of surflets, i.e. 3D points together with normal vectors derived from a plane approximation of their neighborhood. Surflet pairs imply immediately important roof parameters such as azimuth, inclination and ridge height, as well as parameters for internal precision and consistency, giving a good base for assessment and ranking. Ranking of samples leads to a small number of promising hypotheses. Model selection is based on predictions for example of ridge positions which can easily be falsified based on the given observations. Our approach does not require building footprints as prerequisite. They are derived in a preprocessing step using machine learning methods, in particular Support Vector Machines (SVM).</p>


Author(s):  
Jiayong Yu ◽  
Longchen Ma ◽  
Maoyi Tian, ◽  
Xiushan Lu

The unmanned aerial vehicle (UAV)-mounted mobile LiDAR system (ULS) is widely used for geomatics owing to its efficient data acquisition and convenient operation. However, due to limited carrying capacity of a UAV, sensors integrated in the ULS should be small and lightweight, which results in decrease in the density of the collected scanning points. This affects registration between image data and point cloud data. To address this issue, the authors propose a method for registering and fusing ULS sequence images and laser point clouds, wherein they convert the problem of registering point cloud data and image data into a problem of matching feature points between the two images. First, a point cloud is selected to produce an intensity image. Subsequently, the corresponding feature points of the intensity image and the optical image are matched, and exterior orientation parameters are solved using a collinear equation based on image position and orientation. Finally, the sequence images are fused with the laser point cloud, based on the Global Navigation Satellite System (GNSS) time index of the optical image, to generate a true color point cloud. The experimental results show the higher registration accuracy and fusion speed of the proposed method, thereby demonstrating its accuracy and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document