Seamless and automated rapeseed mapping for large cloudy regions using time-series optical satellite imagery

2022 ◽  
Vol 184 ◽  
pp. 45-62
Author(s):  
Hongyan Zhang ◽  
Wenbin Liu ◽  
Liangpei Zhang
Author(s):  
Gillian Milani ◽  
Mathias Kneubuhler ◽  
Diego Tonolla ◽  
Michael Doering ◽  
Michael E. Schaepman

2015 ◽  
Vol 7 (9) ◽  
pp. 11525-11550 ◽  
Author(s):  
Antoine Roumiguié ◽  
Anne Jacquin ◽  
Grégoire Sigel ◽  
Hervé Poilvé ◽  
Olivier Hagolle ◽  
...  

Author(s):  
A. Joshi ◽  
E. Pebesma ◽  
R. Henriques ◽  
M. Appel

Abstract. Earth observation data of large part of the world is available at different temporal, spectral and spatial resolution. These data can be termed as big data as they fulfil the criteria of 3 Vs of big data: Volume, Velocity and Variety. The size of image in archives are multiple petabyte size, the size is growing continuously and the data have varied resolution and usages. These big data have variety of applications including climate change study, forestry application, agricultural application and urban planning. However, these big data also possess challenge of data storage, management and high computational requirement for processing. The solution to this computational and data management requirements is database system with distributed storage and parallel computation.In this study SciDB, an array-based database is used to store, manage and process multitemporal satellite imagery. The major aim of this study is to develop SciDB based scalable solution to store and perform time series analysis on multi-temporal satellite imagery. Total 148 scene of landsat image of 10 years period between 2006 and 2016 were stored as SciDB array. The data was then retrieved, processed and visualized. This study provides solution for storage of big RS data and also provides workflow for time series analysis of remote sensing data no matter how large is the size.


2020 ◽  
Vol 12 (11) ◽  
pp. 1740
Author(s):  
Matthew J. McCarthy ◽  
Brita Jessen ◽  
Michael J. Barry ◽  
Marissa Figueroa ◽  
Jessica McIntosh ◽  
...  

In September of 2017, Hurricane Irma made landfall within the Rookery Bay National Estuarine Research Reserve of southwest Florida (USA) as a category 3 storm with winds in excess of 200 km h−1. We mapped the extent of the hurricane’s impact on coastal land cover with a seasonal time series of satellite imagery. Very high-resolution (i.e., <5 m pixel) satellite imagery has proven effective to map wetland ecosystems, but challenges in data acquisition and storage, algorithm training, and image processing have prevented large-scale and time-series mapping of these data. We describe our approach to address these issues to evaluate Rookery Bay ecosystem damage and recovery using 91 WorldView-2 satellite images collected between 2010 and 2018 mapped using automated techniques and validated with a field campaign. Land cover was classified seasonally at 2 m resolution (i.e., healthy mangrove, degraded mangrove, upland, soil, and water) with an overall accuracy of 82%. Digital change detection methods show that hurricane-related degradation was 17% of mangrove forest (~5 km2). Approximately 35% (1.7 km2) of this loss recovered one year after Hurricane Irma. The approach completed the mapping approximately 200 times faster than existing methods, illustrating the ease with which regional high-resolution mapping may be accomplished efficiently.


Sign in / Sign up

Export Citation Format

Share Document