Effects of Higher Modes and Degrees of Freedom (DOF) on Strength Reduction Factor in Reinforced Concrete Frames Equipped With Steel Plate Shear Wall

Structures ◽  
2019 ◽  
Vol 19 ◽  
pp. 234-247 ◽  
Author(s):  
S. Reza Salimbahrami ◽  
Majid Gholhaki
2014 ◽  
Vol 638-640 ◽  
pp. 1932-1936 ◽  
Author(s):  
Jian Hua Shao ◽  
Qun Wu

The seismic behavior factor of moment resisting steel frame-steel plate shear wall under two different horizontal loading patterns was investigated according to the maximum inter-story drift ratio reaching 1/50. It could be achieved with the same calculated standard as the foreign codes and the determined behavior factor was compared with foreign research results. The method using the software SAP2000 to calculate seismic behavior factor according to the maximum inter-story drift ratio reaching 1/50 was presented and the specific example was used to elaborate the operating process. The seismic behavior factor R, the overstrength factor RΩ and the ductility reduction factor Rμ of 10-storey 3-span steel frame-steel plate shear wall under the inverted triangle load are respectively 6.07, 2.96 and 2.05. while they are respectively 7.2, 3.37 and 2.13 under the uniform load. Finally, it can be concluded that the economic and reasonable design goals are achieved for this structure.


2021 ◽  
Author(s):  
Hamze Rouhi ◽  
Majid Gholhaki

Abstract The residual capacity of a damaged structure after the main earthquake is equal to the smallest spectral acceleration of the first mode, which causes local or general failure during the aftershock. In this research, the effect of steel plate shear wall on residual capacity of the reinforced concrete frame under seismic sequence has been investigated. Based on this, four systems of 4, 8, 12, and 24 stories, which represent short, intermediate, tall, are modeled in finite element software and subject to three sets of single and real seismic sequence, taking into account the damage, the effects of mainshock earthquakes have been analyzed under aftershock earthquakes nonlinear increment dynamic analysis (IDA). The analysis showed that in the real seismic sequence, the residual capacity of a reinforced concrete frame with steel plate shear wall in short and intermediate structures on average 3.6 times and tall structures up to 4.25 times compared to the residual capacity of the reinforced concrete frame without steel plate shear wall. Also, in the real seismic sequence, the residual capacity of the structure decreased with increasing the height of short to intermediate structures and intermediate to tall structures, so that this capacity reduction decreased by an average of 70% in reinforced concrete frame with and without steel plate shear wall.


Author(s):  
V.М. Fomin ◽  
◽  
І.P. Fomina ◽  

Abstract. The article proposes a method for constructing areas of dynamic instability of reinforced concrete frames in the space of parameters (frequency and amplitude) of seismic and operational dynamic impacts that cause the appearance of longitudinal forces in the bars of structures, which periodically change in time and lead to an unlimited increase in amplitudes of transverse vibrations when the values of these parameters are in the areas of instability. The proposed method is demonstrated by a specific example, which considers the spatial problem of dynamic stability of a П-shaped frame with two concentrated masses located on it, which are under the action of vertical periodic forces. These forces create periodic longitudinal forces in the vertical rods of the frame. Areas of dynamic instability of the frame are constructed. From the point of view of human activity, fluctuations can be both beneficial and harmful. We can observe vibrations of various buildings, structures, bridges, which cause additional stresses and deformations of these structures, have a harmful effect on their safe functioning. Too intense fluctuations lead to serious consequences. This leads to the destruction of individual elements of the structure and, as a result, to accidents. The most destructive effect of vibrations is observed during earthquakes and explosions. The study of vibrations is of great practical importance. This avoids the unwanted effects of fluctuations by limiting their level. Only on the basis of a deep study of various types of vibrations can important practical problems of the dynamics of structures be solved. Solving dynamics problems is a complex problem. In contrast to static calculation, when studying oscillations, one has to take into account an additional factor – time. The dynamic design of structures provides them with bearing capacity under the combined action of static and dynamic loads. A construction will be considered as a system with an infinite number of elementary masses distributed over it with an infinitely large number of dynamic degrees of freedom.


Sign in / Sign up

Export Citation Format

Share Document