interstorey drift
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 10)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 1 (2) ◽  
pp. 36-47
Author(s):  
Hilario Alberto Kono ◽  
Partogi H Simatupang ◽  
Ruslan Ramang

The change of plans on gradually development in building structure can be occur with building operational consideration and owner financial. The purpose of this study was to determine the level of performance of the reinforced concrete frame structure with additional levels using steel structures with different span variations. The results of the analysis are used to determine how big the deviation is between levels and to control the level of structure performance. The conclusion of the study shows that the performance level of the structural model analyzed is immediate occupancy (IO) with a total drift ratio and interstorey drift ratio value of the initial building structure (C3S0) in the x direction and y direction of 0.0004, and for variations in building structure with the addition of levels using steel structures (C3S1, C3S2, C5S1, C5S2, C7S1, C7S2) in the x direction ranging from 0.0005-0.0007 and in the y direction ranging from 0.0010-0.0024.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 278
Author(s):  
Raihan Rahmat Rabi ◽  
Vincenzo Bianco ◽  
Giorgio Monti

In seismic risk estimation, among the different types of fragility curves used (judgement-based, mechanical, empirical/observational, hybrid), the mechanical ones have the twofold advantage of allowing a better control over the basic parameters and of representing a validation test of the consistency of empirical/observational ones. In this study, fragility curves of RC frames with column-driven failures are obtained from a simplified analytical pushover method implemented in a simple spreadsheet, thus allowing the user to perform a large number of analyses. More importantly, the proposed method introduces the concept that Limit States at the structural level are obtained consequent to the attainment of the same Limit States at the local level, in the columns’ sections. This avoids using additional criteria, such as interstorey drift thresholds. This simple analytical model allows for rapid development of fragility curves, for any Limit State, of different building typologies identified by a set of global quantities (number of storeys, story heights, number of spans and span lengths) and by a set of local quantities (element sizes, reinforcement, and material properties). It also allows for a straightforward treatment of the influence of the soil class on the fragility curves parameters, which is another critical issue addressed in this work that helps when interpreting some literature results using empirical/observational methods.


Author(s):  
Osman Hansu ◽  
Esra Mete Guneyisi

This study addresses an alternative use of viscous dampers (VDs) associated with buckling restrained braces (BRBs) as the innovative seismic protection devices. For this, 4, 8 and 12 storey steel frames were designed with 6.5 m equal span length and 4 m storey height. Thereafter, the VDs and BRBs were placed over the height of each frame considering three different configurations. The structures were modeled using SAP2000 finite element program and evaluated by the nonlinear time history analyses subjected to the six natural accelerograms (1976 Gazlı, 1978 Tabas, 1987 Superstition Hills, 1992 Cape Mendocino, 1994 Northridge and 1999 Chi-Chi). The structural response of the structures with and without VDs and BRBs were studied in terms of variation in the displacement, interstorey drift, absolute acceleration, maximum base shear, time history of roof displacement. The results clearly indicated that the application of VDs and BRBs had remarkable improvement in the earthquake performance of the case study frames by reducing the local/global deformations in the main structural systems and satisfied the serviceability.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Sakshi A Manchalwar

In the present study, friction damper an energy dissipating passive device is explored to reduce the response of open ground storey building under lateral loading due to earthquake. This damper is installed in the selected bays of open ground storey so that the response is reduced. The masonry infill wall is macro-modeled in the form of compression only diagonal members. Three different types of bracing system were installed along with Pall friction damper – single diagonal tension – compression brace with friction damper, tension only cross brace with friction damper and chevron brace with friction damper were modeled using Wen’s plastic link element in SAP2000. G+4 storey buildings were analyzed using nonlinear time history analysis. The storey displacement and interstorey drift for all the cases were compared in the study.


2020 ◽  
Vol 2 (1) ◽  
pp. 40-47
Author(s):  
Anand Dev Bhatt

 Inter-storey drift is an important parameter of structural behavior in seismic analysis of buildings. Pounding effect in building simply means collision between adjacent buildings due to earthquake load caused by out of phase vibration of adjacent buildings. There is variation in inter-storey drift of adjacent buildings during pounding case and no pounding case. The main objective of this research was to compare the inter-storey drift of general adjacent RC buildings in pounding and no pounding case. For this study two adjacent RC buildings having same number of stories have been considered. For pounding case analysis there is no gap in between adjacent buildings and for no pounding case analysis there is sufficient distance between adjacent buildings. The model consists of adjacent buildings having 4 and 4 stories but unequal storey height. Both the buildings have same material & sectional properties. Fast non-linear time history analysis was performed by using El-centro earthquake data as ground motion. Adjacent buildings having different overall height were modelled in SAP 2000 v 15 using gap element for pounding case. Finally, analysis was done and inter-storey drift was compared. It was found that in higher building inter-storey drift is greater in no pounding case than in pounding case but in adjacent lower height building the result was reversed. Additionally, it was found that in general residential RC buildings maximum inter-storey drift occurs in 2nd floor.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Mukhtiar Ali Soomro ◽  
Naeem Mangi ◽  
Wen-Chieh Cheng ◽  
Dildar Ali Mangnejo

In this paper, a three-dimensional numerical parametric study was conducted to predict the deformation mechanism of a 20-storey building sitting on a (4 × 4) piled raft to an adjacent 25 m deep basement excavation. The influences of different excavation depths were investigated. An advanced hypoplastic sand model (which is capable of taking small-strain stiffness into account) was adopted to capture soil behaviour. The computed results revealed that excavation adjacent to a building resting on the piled raft caused significant settlement, differential settlement, lateral deflection, and interstorey drift in the building. With settlement due to working load (i.e., 4.8dp%), the total settlements of the building (7.8dp%) exceed the maximum allowable foundation settlement (i.e., 50 mm). In addition, substantial bending moment, shear forces, and changes in axial load distribution along pile length were induced. The findings from this study revealed that the building and pile responses are significantly influenced by the excavation depth.


Author(s):  
Harrison Leach ◽  
Kyle Tousignant ◽  
Colin MacDougall

This paper presents the results of a study on pre-engineered steel and aluminum, bolted-plate (BP), staggered dove-tail (S-DT), and dove-tail prototype (DTP) beam-hanger connection systems for glue-laminated timber joints under a combination of shear and reversed cyclic loading. A total of seven systems were tested to observe the evolution of damage, failure modes, and moment-rotation behaviour. The interstorey drift/deflection of a building that would cause failure of each system is inferred from the ultimate rotation capacities and compared to the limit(s) prescribed by Clause 4.1.8.13.3 of the National Building Code of Canada. The BP systems generally reached an interstorey drift exceeding 2.5%, while the S-DT and DTP systems reached drifts of 0.6% and >1.2%, respectively. The BP systems also exhibited more ductile failure modes than the S-DT and DTP systems, involving withdrawal failure of the wood screws. Recommendations are made for appropriate connectors to use in each building category considered.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Peter J. Christopher ◽  
Barnaby Dobson ◽  
Nicholas A. Alexander

This paper explores the nonlinear dynamics of a multidegree of freedom (MDoF) structure impacting a rigid stop. The contact mechanics is simplified by continuous sigmoid function idealisation of a lossless spring. By introducing a smooth nonlinear formulation, we avoid the computational expense of event-driven, piecewise, nonsmooth dynamics. A large parametric study using high-performance computing is undertaken. The nondimensional equations of motion suggest one primary structural parameter, contact-to-storey stiffness ratio, and two excitation parameters, nondimensional ground amplitude and frequency. Bifurcation plots indicate an extremely rich and complex behaviour, particularly in the cases where at least two-floor degrees of freedom (DoFs) impact the stop and when the contact-to-storey stiffness ratio is large. When considering interstorey drift as a performance measure, period-1 impacting solutions are generally favourable when compared to an analogous nonimpacting case. This paper also discusses whether chaotic impacting can be favourable. Finally, we consider the question of whether higher modes are significantly excited, at a linear resonance, for impacting solutions to this system.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Xiangbin Liu ◽  
Hanheng Wu ◽  
Liurui Sang ◽  
Lu Sui ◽  
Congcong Xu

In order to estimate the inelastic interstorey drift of cold-formed steel (CFS) framed structures under collapse level earthquakes, the deflection amplification factor ηp is employed in this paper to compute the maximum interstorey drift ratio (IDRmax) from an elastic analysis. For this purpose, a series of CFS wall specimens were tested under cyclic horizontal loads, and then the hysteresis model of the walls was put forward by test results. In terms of the hysteresis model, a large quantity of elastic-plastic time-history analysis of CFS building structures was conducted based on the storey shear-type model. Furthermore, the deflection amplification factor ηp for estimating IDRmax and the parameters were analyzed. The results indicate that the deflection amplification factor ηp is highly dependent on yielding coefficient of storey shear force ξy, storey number N, period of structure T, and ground acceleration records GA. Eventually, an approximate ξy-N-ηp relationship for estimating the deflection amplification factor ηp is proposed in this paper, which can be used for seismic design in practices.


Sign in / Sign up

Export Citation Format

Share Document