scholarly journals TCT-139 Primary Left Ventricular Unloading with a Trans-valvular Axial Flow Pump Limits Ischemic Heart Failure After Acute Myocardial Infarction

2017 ◽  
Vol 70 (18) ◽  
pp. B61
Author(s):  
Lara Reyelt ◽  
Michele Esposito ◽  
Kevin Morine ◽  
Shiva Annamalai ◽  
Courtney Bogins ◽  
...  
2018 ◽  
Vol 37 (4) ◽  
pp. S262-S263
Author(s):  
S.K. Annamalai ◽  
M. Esposito ◽  
L. Reyelt ◽  
P. Natov ◽  
L. Jorde ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 396
Author(s):  
Wolf-Stephan Rudi ◽  
Michael Molitor ◽  
Venkata Garlapati ◽  
Stefanie Finger ◽  
Johannes Wild ◽  
...  

Aims: Angiotensin-converting-enzyme inhibitors (ACE inhibitors) are a cornerstone of drug therapy after myocardial infarction (MI) and improve left ventricular function and survival. We aimed to elucidate the impact of early treatment with the ACE inhibitor ramipril on the hematopoietic response after MI, as well as on the chronic systemic and vascular inflammation. Methods and Results: In a mouse model of MI, induced by permanent ligation of the left anterior descending artery, immediate initiation of treatment with ramipril (10 mg/k/d via drinking water) reduced cardiac inflammation and the number of circulating inflammatory monocytes, whereas left ventricular function was not altered significantly, respectively. This effect was accompanied by enhanced retention of hematopoietic stem cells, Lin−Sca1−c-Kit+CD34+CD16/32+ granulocyte–macrophage progenitors (GMP) and Lin−Sca1−c-Kit+CD150−CD48− multipotent progenitors (MPP) in the bone marrow, with an upregulation of the niche factors Angiopoetin 1 and Kitl at 7 d post MI. Long-term ACE inhibition for 28 d limited vascular inflammation, particularly the infiltration of Ly6Chigh monocytes/macrophages, and reduced superoxide formation, resulting in improved endothelial function in mice with ischemic heart failure. Conclusion: ACE inhibition modulates the myeloid inflammatory response after MI due to the retention of myeloid precursor cells in their bone marrow reservoir. This results in a reduction in cardiac and vascular inflammation with improvement in survival after MI.


2008 ◽  
Vol 295 (3) ◽  
pp. H1191-H1197 ◽  
Author(s):  
Dmitry Sonin ◽  
Si-Yuan Zhou ◽  
Chunxia Cronin ◽  
Tatiana Sonina ◽  
Jeffrey Wu ◽  
...  

Evidence is accumulating to support the presence of P2X purinergic receptors in the heart. However, the biological role of this receptor remains to be defined. The objectives here were to determine the role of cardiac P2X receptors in modulating the progression of post-myocardial infarction ischemic heart failure and to investigate the underlying mechanism. The P2X4 receptor (P2X4R) is an important subunit of native cardiac P2X receptors, and the cardiac-specific transgenic overexpression of P2X4R (Tg) was developed as a model. Left anterior descending artery ligation resulted in similar infarct size between Tg and wild-type (WT) mice ( P > 0.1). However, Tg mice showed an enhanced cardiac contractile performance at 7 days, 1 mo, and 2 mo after infarction and an increased survival at 1 and 2 mo after infarction ( P < 0.01). The enhanced intact heart function was manifested by a greater global left ventricular developed pressure and rate of contraction of left ventricular pressure in vitro and by a significantly increased fractional shortening and systolic thickening in the noninfarcted region in vivo ( P < 0.05). The salutary effects on the ischemic heart failure phenotype were seen in both sexes and were not the result of any difference in infarct size in Tg versus WT hearts. An enhanced contractile function of the noninfarcted area in the Tg heart was likely an important rescuing mechanism. The cardiac P2X receptor is a novel target to treat post-myocardial infarction ischemic heart failure.


Sign in / Sign up

Export Citation Format

Share Document