scholarly journals TCT-227 Calculation of Aortic Valve Area With the Use of Echocardiography and CT Imaging Versus Echocardiography Alone for More Accurate Assessment of the Severity of Aortic Stenosis

2021 ◽  
Vol 78 (19) ◽  
pp. B92
Author(s):  
J. Bradley Oldemeyer ◽  
Mohamad Lazkani ◽  
Justin Strote ◽  
Stephen Treat ◽  
Abhishek Sawant
2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
S Habjan ◽  
D Cantisani ◽  
I S Scarfo` ◽  
M C Guarneri ◽  
G Semeraro ◽  
...  

Abstract Introduction Radiation therapy is one of the cornerstones of treatment for many types of cancer. These patients can later in life develop cardiovascular complications associated with radiation treatment. Late cardiovascular effects of radiation treatment include coronary artery disease (CAD), valvular heart disease, congestive heart failure, pericardial disease and sudden death. The most common sign of radiation-induced valvular heart disease is the calcification of the intervalvular fibrosa between the aortic and mitral valve. Case presentation A 71-year-old male patient with a history of Non-Hodgkin lymphoma treated with radiotherapy and chemotherapy 20 years ago, CAD, arterial hypertension, diabetes type II, dyslipidemia, obesity and currently smoking presented in the emergency room in our medical facility with acute pulmonary edema. The patient had unstable angina pectoris in 2018, the coronary angiography showed two-vessel disease with a non-significant stenosis of the left main coronary artery (LMCA) and 70% stenosis of the left anterior descending artery (LAD), for which he refused the percutaneous coronary intervention. At the same time, a transthoracic echocardiography (TTE) showed severe aortic stenosis and moderately severe mitral stenosis, at that time the patient refused the operation. After the initial treatment for pulmonary edema, TTE and transesophageal echocardiography (TEE) were performed and showed a tricuspid aortic valve with calcification of the cusps and a very severe aortic stenosis (planimetric aortic valve area 0.74 cm², functional aortic valve area 0.55 cm², indexed functional aortic valve area 0.25 cm²/m², mean gradient 61 mmHg, peak gradient 100 mmHg, stroke volume (SV) 69 ml, stroke volume index (SVI) 31 ml/m², flow rate 221 ml/s, aortic annulus 20x26 mm). The left ventricle was severely dilated (end diastolic volume 268 ml) with diffuse hypokinesia and severe systolic dysfunction (ejection fraction 32%). We appreciated a calcification of the mitral-aortic intervalvular fibrosa and the mitral annulus, without mitral stenosis but with moderate mitral regurgitation. The calcification of the intervalvular fibrosa suggested our final diagnosis of radiation-induced valvular heart disease with a severe aortic stenosis in low-flow conditions. The patient was successfully treated with transcatheter aortic valve implantation (TAVI). Conclusion Radiation-induced heart disease is a common reality and is destinated to raise due to the increasing number of cancer survivors. Effects are seen also many years after the radiation treatment. The exact primary mechanism of radiation injury to the heart is still unknown. The treatment of radiation-induced valve disease is the same as the treatment of valve disease in the general population. Abstract P1692 Figure. Radiation-induced valvular heart disease


1994 ◽  
Vol 128 (3) ◽  
pp. 526-532 ◽  
Author(s):  
Christophe Tribouilloy ◽  
Wei Feng Shen ◽  
Marcel Peltier ◽  
Anfani Mirode ◽  
Jean-Luc Rey ◽  
...  

2013 ◽  
Vol 34 (suppl 1) ◽  
pp. P277-P277
Author(s):  
G. Barone-Rochette ◽  
S. Pierard ◽  
S. Seldrum ◽  
C. De Meester De Ravensteen ◽  
J. Melchior ◽  
...  

1995 ◽  
Vol 25 (3) ◽  
pp. 635
Author(s):  
Hyeon-Cheol Gwon ◽  
Ju-Hee Zo ◽  
Hyo-Soo Kim ◽  
Dae-Won Sohn ◽  
Byung-Hee Oh ◽  
...  

2019 ◽  
Vol 6 (4) ◽  
pp. 97-103 ◽  
Author(s):  
Andaleeb A Ahmed ◽  
Robina Matyal ◽  
Feroze Mahmood ◽  
Ruby Feng ◽  
Graham B Berry ◽  
...  

Objective Due to its circular shape, the area of the proximal left ventricular tract (PLVOT) adjacent to aortic valve can be derived from a single linear diameter. This is also the location of flow acceleration (FA) during systole, and pulse wave Doppler (PWD) sample volume in the PLVOT can lead to overestimation of velocity (V1) and the aortic valve area (AVA). Therefore, it is recommended to derive V1 from a region of laminar flow in the elliptical shaped distal LVOT (away from the annulus). Besides being inconsistent with the assumptions of continuity equation (CE), spatial difference in the location of flow and area measurement can result in inaccurate AVA calculation. We evaluated the impact of FA in the PLVOT on the accuracy of AVA by continuity equation (CE) in patients with aortic stenosis (AS). Methods CE-based AVA calculations were performed in patients with AS once with PWD-derived velocity time integral (VTI) in the distal LVOT (VTILVOT) and then in the PLVOT to obtain a FA velocity profile (FA-VTILVOT) for each patient. A paired sample t-test (P < 0.05) was conducted to compare the impact of FA-VTILVOT and VTILVOT on the calculation of AVA. Result There were 46 patients in the study. There was a 30.3% increase in the peak FA-VTILVOT as compared to the peak VTILVOT and AVA obtained by FA-VTILVOT was 29.1% higher than obtained by VTILVOT. Conclusion Accuracy of AVA can be significantly impacted by FA in the PLVOT. LVOT area should be measured with 3D imaging in the distal LVOT.


Sign in / Sign up

Export Citation Format

Share Document