scholarly journals Mipomersen, a First-in-Class Apolipoprotein B Synthesis Inhibitor, Lowers Lipoprotein (a) in Patients with Homozygous Familial Hypercholesterolemia

2010 ◽  
Vol 4 (3) ◽  
pp. 221 ◽  
Author(s):  
William C. Cromwell ◽  
Raul D. Santos ◽  
Dirk J. Blom ◽  
David A. Marais ◽  
Robin H. Lachmann ◽  
...  
2016 ◽  
Vol 62 (7) ◽  
pp. 930-946 ◽  
Author(s):  
Børge G Nordestgaard ◽  
Anne Langsted ◽  
Samia Mora ◽  
Genovefa Kolovou ◽  
Hannsjörg Baum ◽  
...  

Abstract AIMS To critically evaluate the clinical implications of the use of non-fasting rather than fasting lipid profiles and to provide guidance for the laboratory reporting of abnormal non-fasting or fasting lipid profiles. METHODS AND RESULTS Extensive observational data, in which random non-fasting lipid profiles have been compared with those determined under fasting conditions, indicate that the maximal mean changes at 1–6 h after habitual meals are not clinically significant [+0.3 mmol/L (26 mg/dL) for triglycerides; −0.2 mmol/L (8 mg/dL) for total cholesterol; −0.2 mmol/L (8 mg/dL) for LDL cholesterol; +0.2 mmol/L (8 mg/dL) for calculated remnant cholesterol; −0.2 mmol/L (8 mg/dL) for calculated non-HDL cholesterol]; concentrations of HDL cholesterol, apolipoprotein A1, apolipoprotein B, and lipoprotein(a) are not affected by fasting/non-fasting status. In addition, non-fasting and fasting concentrations vary similarly over time and are comparable in the prediction of cardiovascular disease. To improve patient compliance with lipid testing, we therefore recommend the routine use of non-fasting lipid profiles, whereas fasting sampling may be considered when non-fasting triglycerides are >5 mmol/L (440 mg/dL). For non-fasting samples, laboratory reports should flag abnormal concentrations as triglycerides ≥2 mmol/L (175 mg/dL), total cholesterol ≥5 mmol/L (190 mg/dL), LDL cholesterol ≥3 mmol/L (115 mg/dL), calculated remnant cholesterol ≥0.9 mmol/L (35 mg/dL), calculated non-HDL cholesterol ≥3.9 mmol/L (150 mg/dL), HDL cholesterol ≤1 mmol/L (40 mg/dL), apolipoprotein A1 ≤1.25 g/L (125 mg/dL), apolipoprotein B ≥1.0 g/L (100 mg/dL), and lipoprotein(a) ≥50 mg/dL (80th percentile); for fasting samples, abnormal concentrations correspond to triglycerides ≥1.7 mmol/L (150 mg/dL). Life-threatening concentrations require separate referral for the risk of pancreatitis when triglycerides are >10 mmol/L (880 mg/dL), for homozygous familial hypercholesterolemia when LDL cholesterol is >13 mmol/L (500 mg/dL), for heterozygous familial hypercholesterolemia when LDL cholesterol is >5 mmol/L (190 mg/dL), and for very high cardiovascular risk when lipoprotein(a) >150 mg/dL (99th percentile). CONCLUSIONS We recommend that non-fasting blood samples be routinely used for the assessment of plasma lipid profiles. Laboratory reports should flag abnormal values on the basis of desirable concentration cutpoints. Non-fasting and fasting measurements should be complementary but not mutually exclusive.


1998 ◽  
Vol 83 (6) ◽  
pp. 2167-2174 ◽  
Author(s):  
Hartmut H.-J. Schmidt ◽  
Manfred Stuhrmann ◽  
Robert Shamburek ◽  
C. Knud Schewe ◽  
Margit Ebhardt ◽  
...  

We identified a 38-yr-old male patient with the clinical expression of homozygous familial hypercholesterolemia presenting as severe coronary artery disease, tendon and skin xanthomas, arcus lipoides, and joint pain. The genetic trait seems to be autosomal recessive. Interestingly, serum concentrations of cholesterol responded well to diet and statins. We had no evidence of an abnormal low density lipoprotein (LDL)-apolipoprotein B (apoB) particle, which was isolated from the patient using the U937 proliferation assay as a functional test of the LDL-binding capacity. The apoB 3500 and apoB 3531 defects were ruled out by PCR. In addition, we found no evidence for a defect within the LDL-receptor by skin fibroblast analysis, linkage analysis, single-strand conformational polymorphism and Southern blot screening across the entire LDL-receptor gene. The in vivo kinetics of radioiodinated LDL-apoB were evaluated in the proband and three normal controls, subsequently. The LDL-apoB isolated from the patient showed a normal catabolism, confirming an intact LDL particle. In contrast the fractional catabolic rate (d−1) of autologous LDL in the subject and the normal controls revealed a remarkable delayed catabolism of the patient’s LDL (0.15 vs. 0.33–0.43 d−1). In addition, the elevation of LDL-cholesterol in the patient resulted from an increased production rate with 22.8 mg/kg per day vs. 12.7–15.7 mg/kg per day. These data indicate that there is another catabolic defect beyond the apoB and LDL-receptor gene causing familial hypercholesterolemia.


2000 ◽  
Vol 20 (2) ◽  
pp. 522-528 ◽  
Author(s):  
H. G. Kraft ◽  
A. Lingenhel ◽  
F. J. Raal ◽  
M. Hohenegger ◽  
G. Utermann

1989 ◽  
Vol 30 (2) ◽  
pp. 159-169
Author(s):  
R W James ◽  
B Martin ◽  
D Pometta ◽  
J C Fruchart ◽  
P Duriez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document