Crustal structure beneath two seismic broadband stations revealed from teleseismic P-wave receiver function analysis in the Virunga volcanic area, Western Rift Valley of Africa

2010 ◽  
Vol 58 (5) ◽  
pp. 820-828 ◽  
Author(s):  
Georges Mavonga Tuluka
2020 ◽  
Author(s):  
Frilla R. T. Saputra ◽  
Syuhada Syuhada ◽  
Titi Anggono ◽  
Mohammad S. Rosid

Author(s):  
Heather A. Ford ◽  
Maximiliano J. Bezada ◽  
Joseph S. Byrnes ◽  
Andrew Birkey ◽  
Zhao Zhu

Abstract The Crust and lithosphere Investigation of the Easternmost expression of the Laramide Orogeny was a two-year deployment of 24 broadband, compact posthole seismometers in a linear array across the eastern half of the Wyoming craton. The experiment was designed to image the crust and upper mantle of the region to better understand the evolution of the cratonic lithosphere. In this article, we describe the motivation and objectives of the experiment; summarize the station design and installation; provide a detailed accounting of data completeness and quality, including issues related to sensor orientation and ambient noise; and show examples of collected waveform data from a local earthquake, a local mine blast, and a teleseismic event. We observe a range of seasonal variations in the long-period noise on the horizontal components (15–20 dB) at some stations that likely reflect the range of soil types across the experiment. In addition, coal mining in the Powder River basin creates high levels of short-period noise at some stations. Preliminary results from Ps receiver function analysis, shear-wave splitting analysis, and averaged P-wave delay times are also included in this report, as is a brief description of education and outreach activities completed during the experiment.


Lithosphere ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 448-464
Author(s):  
Richard H. Groshong ◽  
Ryan Porter

Abstract The ability of models designed to use near-surface structural information to predict the deep geometry of a faulted block is tested for a thick-skinned thrust by matching the surface geometry to the crustal structure beneath the Wind River Range, Wyoming, USA. The Wind River Range is an ∼100-km-wide, thick-skinned rotated basement block bounded on one side by a high-angle reverse fault. The availability of a deep seismic-reflection profile and a detailed crustal impedance profile based on teleseismic receiver-function analysis makes this location ideal for testing techniques used to predict the deep fault geometry from shallow data. The techniques applied are the kinematic models for a circular-arc fault, oblique simple-shear fault, shear fault-bend fold, and model-independent excess area balancing. All the kinematic models imply that the deformation cannot be exclusively rigid-body rotation but rather require distributed deformation throughout some or all of the basement. Both the circular-arc model and the oblique-shear models give nearly the same best fit to the master fault geometry. The predicted lower detachment matches a potential crustal detachment zone at 31 km subsea. The thrust ramp is located close to where this zone dies out to the southwest. The circular-arc model implies that the penetrative deformation could be focused at the trailing edge of the basement block rather than being distributed uniformly throughout and thus helps to explain the line of second-order anticlines along the trailing edge of the Wind River block. Key points: (1) The circular-arc fault model and the oblique-shear model predict a lower detachment for the Wind River rotated block to be ∼31 km subsea, consistent with the crustal structure as defined by teleseismic receiver-function analysis. The thrust ramp starts where this zone dies out. (2) The kinematic models require distributed internal deformation within the basement block, probably concentrated at the trailing edge. (3) The uplift at the trailing edge of the rotated block is explained by the circular-arc kinematic model as a requirement to maintain area balance of a mostly rigid block above a horizontal detachment; the oblique-shear model can explain the uplift as caused by displacement on a dipping detachment.


2004 ◽  
Vol 159 (1) ◽  
pp. 146-164 ◽  
Author(s):  
Kwang-Hee Kim ◽  
Jer-Ming Chiu ◽  
Honn Kao ◽  
Qiyuan Liu ◽  
Yih-Hsiung Yeh

Sign in / Sign up

Export Citation Format

Share Document