high lava plains
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
pp. 301-352
Author(s):  
Emily B. Cahoon† ◽  
Martin J. Streck† ◽  
Mark Ferns†

ABSTRACT The Miocene Columbia River Basalt Group (CRBG) is the youngest and smallest continental flood basalt province on Earth. This flood basalt province is a succession of compositionally diverse volcanic rocks that record the passage of the Yellowstone plume beneath eastern Oregon. The compositionally and texturally varied suite of volcanic rocks are considered part of the La Grande–Owyhee eruptive axis (LOEA), an ~300-km-long, north-northwest–trending, Middle Miocene to Pliocene volcanic belt that extends along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the flood basalt–dominated Columbia Plateau to the north, the north and bimodal basalt-rhyolite volcanic fields of the Snake River Plain to the east, the Owyhee Plateau to the south, and the High Lava Plains to the south and east; the latter two have time transgressive rhyolite centers that young to the east and west, respectively. This field-trip guide details a four-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the CRBG and coeval and compositionally diverse silicic rocks associated with the early trace of the Yellowstone plume and High Lava Plains in eastern Oregon. The trip on Day 1 begins in Portland then traverses across the western axis of the Blue Mountains, highlighting exposures of the widespread, Middle Miocene Dinner Creek Welded Tuff and aspects of the Picture Gorge Basalt lava flows and northwest-striking feeder dikes situated in the central part of the CRBG province. Travel on Day 2 progresses eastward toward the eastern margin of the LOEA, examining a transition linking the Columbia River Basalt province with a northwestward-younging magmatic trend of silicic volcanism of the High Lava Plains in eastern Oregon. Initial field stops on Day 2 focus on the volcanic stratigraphy northeast of the town of Burns, which includes regionally extensive Middle to Late Miocene ash-flow tuffs and lava flows assigned to the Strawberry Volcanics. Subsequent stops on Day 2 examine key outcrops demonstrating the intercalated nature of Middle Miocene tholeiitic CRBG flood basalts, temporally coeval prominent ash-flow tuffs, and “Snake River–type” large-volume rhyolite lava flows cropping out along the Malheur River. The Day 3 field route navigates to southern parts of the LOEA, where CRBG rocks are associated in space and time with lesser known and more complex silicic volcanic stratigraphy forming Middle Miocene, large-volume, bimodal basalt-rhyolite vent complexes. Key stops will provide a broad overview of the structure and stratigraphy of the Middle Miocene Mahogany Mountain caldera and of the significance of intercalated sedimentary beds and Middle to Late Miocene calc-alkaline lava flows of the Owyhee basalt. Initial stops on Day 4 will highlight exposures of Middle to Late Miocene silicic ash-flow tuffs, rhyolite domes, and calc-alkaline lava flows overlying the CRBG across the northern and central parts of the LOEA. The later stops on Day 4 examine more silicic lava flows and breccias that are overlain by early CRBG-related rhyolite eruptions. The return route to Portland on Day 4 traverses the Columbia River gorge westward from Baker City. The return route between Baker and Portland on Day 4 follows the Columbia River gorge and passes prominent basalt outcrops of large volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Formations of the CRBG. These sequences of basaltic and basaltic andesite lavas are typical of the well-studied flood basalt dominated Columbia Plateau, and interbedded silicic and calc-alkaline lavas are conspicuously absent. Correlation between the far-traveled CRBG lavas and calcalkaline and silicic lavas considered during the excursion relies on geochemical fingerprinting and dating of the mafic flows and dating of sparse intercalated ashes.


2021 ◽  
Author(s):  
Eric Löberich ◽  
Maureen D. Long ◽  
Lara S. Wagner ◽  
Ehsan Qorbani ◽  
Götz Bokelmann

<p>Shear-wave splitting observations of SKS and SKKS phases have been used widely to map azimuthal anisotropy, and to constrain the dominant mechanism of upper mantle deformation. As the interpretation is often ambiguous, it is useful to consider additional information, e.g. based on the non-vertical incidence of core-phases. Depending on the lattice-preferred orientation of anisotropic minerals, this condition leads to a variation of splitting parameters with azimuth and enables a differentiation between various types of olivine deformation. As the fabric of olivine-rich rocks in the upper mantle relates to certain ambient conditions, it is of key importance to further define it. In this study, we predict the azimuthal variation of splitting parameters for A-, C-, and E-type olivine, and match them with observations from the High Lava Plains, Northwestern Basin and Range, and Western Yellowstone Snake River Plain. This can help to constrain the amount of water in the upper mantle beneath an area, known for a consistent, mainly E-W fast orientation, and increased splitting delay in the back-arc of the Cascadia Subduction Zone. Comparing expected and observed variations renders a C-type olivine mechanism unlikely; a differentiation between A- and E-type olivine remains more difficult though. However, the agreement of the amplitude of azimuthal variation of the fast orientation, and the potential to explain larger splitting values, suggest the occurrence of E-type olivine and the presence of a hydrated upper mantle. Along with a discrepancy to predict delay times from azimuthal surface wave anisotropy, deeper sources could further affect shear-wave splitting observations.</p>


Geology ◽  
2019 ◽  
Vol 47 (8) ◽  
pp. 695-699 ◽  
Author(s):  
Victor E. Camp

AbstractBimodal volcanism and rhyolite migration along the High Lava Plains in central Oregon (United States) lie above a broader feature defined by low seismic velocity in the upper mantle that emanates from the Yellowstone hotspot (northwest United States) and extends westward across the northern Basin and Range. It was emplaced by a westward current, driven in part by rapid buoyancy-driven flow across the east-west cratonic boundary of North America. Geothermometry studies and geochemical considerations suggest that the low-velocity feature may be composed of moderately hot, low-density mantle derived from the Yellowstone plume but diluted by thermomechanical erosion and entrainment of colder mantle lithosphere. Finger-like conduits of plume-modified mantle beneath Quaternary eruption sites delineate flow-line channels that have developed across the broader mantle structure since 2 Ma. These channels have allowed low-density mantle to accumulate against the Cascades arc, thus providing a heated mantle source for mafic magmatism in the Newberry (Oregon) and Medicine Lake (California) volcanic fields.


2013 ◽  
Vol 14 (12) ◽  
pp. 5208-5226 ◽  
Author(s):  
Catherine Cox ◽  
G. Randy Keller ◽  
Steven H. Harder

2013 ◽  
Vol 14 (11) ◽  
pp. 4835-4848 ◽  
Author(s):  
Chin-Wu Chen ◽  
David E. James ◽  
Matthew J. Fouch ◽  
Lara S. Wagner

Sign in / Sign up

Export Citation Format

Share Document