scholarly journals Integrated well log and 2-D seismic data interpretation to image the subsurface stratigraphy and structure in north-eastern Bornu (Chad) basin

2016 ◽  
Vol 121 ◽  
pp. 1-15 ◽  
Author(s):  
Aminu A. Isyaku ◽  
Derek Rust ◽  
Richard Teeuw ◽  
Malcolm Whitworth
Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 293
Author(s):  
Wei Tian ◽  
Xiaomin Li ◽  
Lei Wang

Disparities between fold amplitude (A) and intrusion thickness (Hsill) are critical in identifying elastic or inelastic deformation in a forced fold. However, accurate measurements of these two parameters are challenging because of the limit in separability and detectability of the seismic data. We combined wireline data and 3-D seismic data from the TZ-47 exploring area in the Tarim Basin, Northwest China, to accurately constrain the fold amplitude and total thickness of sills that induced roof uplift in the terrain. Results from the measurement show that the forced fold amplitude is 155.0 m. After decompaction, the original forced fold amplitude in the area penetrated by the well T47 ranged from 159.9 to 225.8 m, which overlaps the total thickness of the stack of sills recovered by seismic method (171.4 m) and well log method (181.0 m). Therefore, the fold amplitude at T47 area is likely to be elastic. In contrast, the outer area of the TZ-47 forced fold is characterized by shear-style deformation, indicating inelastic deformation at the marginal area. It is suggested that interbedded limestone layers would play an important role in strengthening the roof layers, preventing inelastic deformation during the emplacement of intrusive magma.


2021 ◽  
Author(s):  
Donglin Zhu ◽  
Lei Li ◽  
Rui Guo ◽  
Shifan Zhan

Abstract Fault detection is an important, but time-consuming task in seismic data interpretation. Traditionally, seismic attributes, such as coherency (Marfurt et al., 1998) and curvature (Al-Dossary et al., 2006) are used to detect faults. Recently, machine learning methods, such as convolution neural networks (CNNs) are used to detect faults, by applying various semantic segmentation algorithms to the seismic data (Wu et al., 2019). The most used algorithm is U-Net (Ronneberger et al., 2015), which can accurately and efficiently provide probability maps of faults. However, probabilities of faults generated by semantic segmentation algorithms are not sufficient for direct recognition of fault types and reconstruction of fault surfaces. To address this problem, we propose, for the first time, a workflow to use instance segmentation algorithm to detect different fault lines. Specifically, a modified CNN (LaneNet; Neven et al., 2018) is trained using automatically generated synthetic seismic images and corresponding labels. We then test the trained CNN using both synthetic and field collected seismic data. Results indicate that the proposed workflow is accurate and effective at detecting faults.


2021 ◽  
pp. 1-50
Author(s):  
Yongchae Cho

The prediction of natural fracture networks and their geomechanical properties remains a challenge for unconventional reservoir characterization. Since natural fractures are highly heterogeneous and sub-seismic scale, integrating petrophysical data (i.e., cores, well logs) with seismic data is important for building a reliable natural fracture model. Therefore, I introduce an integrated and stochastic approach for discrete fracture network modeling with field data demonstration. In the proposed method, I first perform a seismic attribute analysis to highlight the discontinuity in the seismic data. Then, I extrapolate the well log data which includes localized but high-confidence information. By using the fracture intensity model including both seismic and well logs, I build the final natural fracture model which can be used as a background model for the subsequent geomechanical analysis such as simulation of hydraulic fractures propagation. As a result, the proposed workflow combining multiscale data in a stochastic approach constructs a reliable natural fracture model. I validate the constructed fracture distribution by its good agreement with the well log data.


Sign in / Sign up

Export Citation Format

Share Document