seismic method
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 20)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Maurin Puspitasari ◽  
Ambran Hartono ◽  
Egie Wijaksono ◽  
Tati Zera

Research on the application of the acoustic impedance (AI) seismic inversion and multi-attribute method was conducted with the aim to characterize the reservoir in the Bonaparte Basin. The modeling which used in the acoustic impedance inversion seismic method is model-based. Meanwhile, the multi-attribute seismic method used log porosity that appliying the linear regression method and using the stepwise regression technique. Based on the result of the sensitivity analysis and analysis using the seismic inversion acoustic impedance method, the sandstone reservoir zone that has the prospect of hydrocarbons containing gas is located in the Northeast-Southwest part of the study area which in WCB-1, WCB-3 and WCB-4 well with the acoustic impedance values are in the range of 4,800 - 13,000 (m / s) * (g / cc), and the porosity values generated from the analysis using the multi-attribute seismic method are in the range of 5 - 16% in WCB-1 and WCB-4, 2 - 10% on WCB-3.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 293
Author(s):  
Wei Tian ◽  
Xiaomin Li ◽  
Lei Wang

Disparities between fold amplitude (A) and intrusion thickness (Hsill) are critical in identifying elastic or inelastic deformation in a forced fold. However, accurate measurements of these two parameters are challenging because of the limit in separability and detectability of the seismic data. We combined wireline data and 3-D seismic data from the TZ-47 exploring area in the Tarim Basin, Northwest China, to accurately constrain the fold amplitude and total thickness of sills that induced roof uplift in the terrain. Results from the measurement show that the forced fold amplitude is 155.0 m. After decompaction, the original forced fold amplitude in the area penetrated by the well T47 ranged from 159.9 to 225.8 m, which overlaps the total thickness of the stack of sills recovered by seismic method (171.4 m) and well log method (181.0 m). Therefore, the fold amplitude at T47 area is likely to be elastic. In contrast, the outer area of the TZ-47 forced fold is characterized by shear-style deformation, indicating inelastic deformation at the marginal area. It is suggested that interbedded limestone layers would play an important role in strengthening the roof layers, preventing inelastic deformation during the emplacement of intrusive magma.


Sign in / Sign up

Export Citation Format

Share Document