scholarly journals INTEGRATED APPROACH FOR THE PETROPHYSICAL INTERPRETATION OF POST-AND PRE-STACK 3-D SEISMIC DATA, WELL-LOG DATA, CORE DATA, GEOLOGICAL INFORMATION AND RESERVOIR PRODUCTION DATA VIA BAYESIAN STOCHASTIC INVERSION

2004 ◽  
Author(s):  
Carlos Torres-Verdin ◽  
Mrinal K. Sen
SPE Journal ◽  
2006 ◽  
Vol 11 (04) ◽  
pp. 464-479 ◽  
Author(s):  
B. Todd Hoffman ◽  
Jef K. Caers ◽  
Xian-Huan Wen ◽  
Sebastien B. Strebelle

Summary This paper presents an innovative methodology to integrate prior geologic information, well-log data, seismic data, and production data into a consistent 3D reservoir model. Furthermore, the method is applied to a real channel reservoir from the African coast. The methodology relies on the probability-perturbation method (PPM). Perturbing probabilities rather than actual petrophysical properties guarantees that the conceptual geologic model is maintained and that any history-matching-related artifacts are avoided. Creating reservoir models that match all types of data are likely to have more prediction power than methods in which some data are not honored. The first part of the paper reviews the details of the PPM, and the next part of this paper describes the additional work that is required to history-match real reservoirs using this method. Then, a geological description of the reservoir case study is provided, and the procedure to build 3D reservoir models that are only conditioned to the static data is covered. Because of the character of the field, the channels are modeled with a multiple-point geostatistical method. The channel locations are perturbed in a manner such that the oil, water, and gas rates from the reservoir more accurately match the rates observed in the field. Two different geologic scenarios are used, and multiple history-matched models are generated for each scenario. The reservoir has been producing for approximately 5 years, but the models are matched only to the first 3 years of production. Afterward, to check predictive power, the matched models are run for the last 1½ years, and the results compare favorably with the field data. Introduction Reservoir models are constructed to better understand reservoir behavior and to better predict reservoir response. Economic decisions are often based on the predictions from reservoir models; therefore, such predictions need to be as accurate as possible. To achieve this goal, the reservoir model should honor all sources of data, including well-log, seismic, geologic information, and dynamic (production rate and pressure) data. Incorporating dynamic data into the reservoir model is generally known as history matching. History matching is difficult because it poses a nonlinear inverse problem in the sense that the relationship between the reservoir model parameters and the dynamic data is highly nonlinear and multiple solutions are avail- able. Therefore, history matching is often done with a trial-and-error method. In real-world applications of history matching, reservoir engineers manually modify an initial model provided by geoscientists until the production data are matched. The initial model is built based on geological and seismic data. While attempts are usually made to honor these other data as much as possible, often the history-matched models are unrealistic from a geological (and geophysical) point of view. For example, permeability is often altered to increase or decrease flow in areas where a mismatch is observed; however, the permeability alterations usually come in the form of box-shaped or pipe-shaped geometries centered around wells or between wells and tend to be devoid of any geologica. considerations. The primary focus lies in obtaining a history match.


2021 ◽  
Vol 2092 (1) ◽  
pp. 012024
Author(s):  
Tangwei Liu ◽  
Hehua Xu ◽  
Xiaobin Shi ◽  
Xuelin Qiu ◽  
Zhen Sun

Abstract Reservoir porosity and permeability are considered as very important parameters in characterizing oil and gas reservoirs. Traditional methods for porosity and permeability prediction are well log and core data analysis to get some regression empirical formulas. However, because of strong non-linear relationship between well log data and core data such as porosity and permeability, usual statistical regression methods are not completely able to provide meaningful estimate results. It is very difficult to measure fine scale porosity and permeability parameters of the reservoir. In this paper, the least square support vector machine (LS-SVM) method is applied to the parameters estimation with well log and core data of Qiongdongnan basin reservoirs. With the log and core exploration data of Qiongdongnan basin, the approach and prediction models of porosity and permeability are constructed and applied. There are several type of log data for the determination of porosity and permeability. These parameters are related with the selected log data. However, a precise analysis and determine of parameters require a combinatorial selection method for different type data. Some curves such as RHOB,CALI,POTA,THOR,GR are selected from all obtained logging curves of a Qiongdongnan basin well to predict porosity. At last we give some permeability prediction results based on LS-SVM method. High precision practice results illustrate the efficiency of LS-SVM method for practical reservoir parameter estimation problems.


2020 ◽  
Vol 8 (4) ◽  
pp. T1057-T1069
Author(s):  
Ritesh Kumar Sharma ◽  
Satinder Chopra ◽  
Larry Lines

The discrimination of fluid content and lithology in a reservoir is important because it has a bearing on reservoir development and its management. Among other things, rock-physics analysis is usually carried out to distinguish between the lithology and fluid components of a reservoir by way of estimating the volume of clay, water saturation, and porosity using seismic data. Although these rock-physics parameters are easy to compute for conventional plays, there are many uncertainties in their estimation for unconventional plays, especially where multiple zones need to be characterized simultaneously. We have evaluated such uncertainties with reference to a data set from the Delaware Basin where the Bone Spring, Wolfcamp, Barnett, and Mississippian Formations are the prospective zones. Attempts at seismic reservoir characterization of these formations have been developed in Part 1 of this paper, where the geologic background of the area of study, the preconditioning of prestack seismic data, well-log correlation, accounting for the temporal and lateral variation in the seismic wavelets, and building of robust low-frequency model for prestack simultaneous impedance inversion were determined. We determine the challenges and the uncertainty in the characterization of the Bone Spring, Wolfcamp, Barnett, and Mississippian sections and explain how we overcame those. In the light of these uncertainties, we decide that any deterministic approach for characterization of the target formations of interest may not be appropriate and we build a case for adopting a robust statistical approach. Making use of neutron porosity and density porosity well-log data in the formations of interest, we determine how the type of shale, volume of shale, effective porosity, and lithoclassification can be carried out. Using the available log data, multimineral analysis was also carried out using a nonlinear optimization approach, which lent support to our facies classification. We then extend this exercise to derived seismic attributes for determination of the lithofacies volumes and their probabilities, together with their correlations with the facies information derived from mud log data.


2014 ◽  
Author(s):  
M. M. Smith ◽  
L. E. Sobers

Abstract Natural gas hydrates can be found in conventional hydrocarbon depositional environments such as clastic marine sediments, siltstones and unconsolidated sands and in oceanic environments for reservoir pressures greater than 663 psi (46 bars) and temperatures less than 20 °C. These conditions are found in the deep water (> 300 m) acreage off the South East coast of Trinidad. Natural gas hydrates have been recovered in this area during drilling and seismic data have shown that there may be deposits in some areas. In this study we reviewed all the available borehole data and employed well log interpretation techniques to identify natural gas hydrates in the deep water acreage blocks 25 a, 25 b, 26 and 27 off the Trinidad South East coast. The analysis of well log data for the given depths did not present evidence to suggest the presence of natural gas hydrates in Blocks 25 a, 25 b, 26 and 27. In this paper we present our analysis of the data available and recommend the formation depths which should be logged in during the deep water exploration drilling to confirm the seismic data and core data which indicate the presence of natural gas hydrates in these blocks.


2013 ◽  
Vol 321-324 ◽  
pp. 2444-2447
Author(s):  
Cheng Hua Ou ◽  
Qiang Han ◽  
Wen Jiang Zhou

There are more and more overseas offshore oil project in china, along of external interdependent level in petroleum becomes upgrading year by year. Therefore, developing quick forecast method on overseas offshore reservoirs becomes very necessary. The method is divided into three steps: i the core data analysis results are used to calibrate the interpretation about logs of well, ii the well log interpreted results are used to mark seismic data, iii the abundant seismic data is used to forecast overseas offshore reservoir quickly. And rear end in this article, an overseas offshore reservoir is used to as an example to verify the applicability and reliability of the method.


Sign in / Sign up

Export Citation Format

Share Document