The assessment of soil erosion risk, sediment yield and their controlling factors on a large scale: Example of Morocco

2018 ◽  
Vol 147 ◽  
pp. 281-299 ◽  
Author(s):  
Abdelali Gourfi ◽  
Lahcen Daoudi ◽  
Zhou Shi
2011 ◽  
Vol 65 (1) ◽  
pp. 221-229 ◽  
Author(s):  
Xi Wang Zhang ◽  
Bing Fang Wu ◽  
Xiao Song Li ◽  
Shan Long Lu

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Jarbou A. Bahrawi ◽  
Mohamed Elhag ◽  
Amal Y. Aldhebiani ◽  
Hanaa K. Galal ◽  
Ahmad K. Hegazy ◽  
...  

Soil erosion is one of the major environmental problems in terms of soil degradation in Saudi Arabia. Soil erosion leads to significant on- and off-site impacts such as significant decrease in the productive capacity of the land and sedimentation. The key aspects influencing the quantity of soil erosion mainly rely on the vegetation cover, topography, soil type, and climate. This research studies the quantification of soil erosion under different levels of data availability in Wadi Yalamlam. Remote Sensing (RS) and Geographic Information Systems (GIS) techniques have been implemented for the assessment of the data, applying the Revised Universal Soil Loss Equation (RUSLE) for the calculation of the risk of erosion. Thirty-four soil samples were randomly selected for the calculation of the erodibility factor, based on calculating theK-factor values derived from soil property surfaces after interpolating soil sampling points. Soil erosion risk map was reclassified into five erosion risk classes and 19.3% of the Wadi Yalamlam is under very severe risk (37,740 ha). GIS and RS proved to be powerful instruments for mapping soil erosion risk, providing sufficient tools for the analytical part of this research. The mapping results certified the role of RUSLE as a decision support tool.


2014 ◽  
Vol 11 (2) ◽  
pp. 323-341 ◽  
Author(s):  
M. Fantappiè ◽  
S. Priori ◽  
E.A.C. Costantini

2018 ◽  
Vol 6 (3) ◽  
pp. 687-703 ◽  
Author(s):  
Joris P. C. Eekhout ◽  
Wilco Terink ◽  
Joris de Vente

Abstract. Assessing the impacts of environmental change on soil erosion and sediment yield at the large catchment scale remains one of the main challenges in soil erosion modelling studies. Here, we present a process-based soil erosion model, based on the integration of the Morgan–Morgan–Finney erosion model in a daily based hydrological model. The model overcomes many of the limitations of previous large-scale soil erosion models, as it includes a more complete representation of crucial processes like surface runoff generation, dynamic vegetation development, and sediment deposition, and runs at the catchment scale with a daily time step. This makes the model especially suited for the evaluation of the impacts of environmental change on soil erosion and sediment yield at regional scales and over decadal periods. The model was successfully applied in a large catchment in southeastern Spain. We demonstrate the model's capacity to perform impact assessments of environmental change scenarios, specifically simulating the scenario impacts of intra- and inter-annual variations in climate, land management, and vegetation development on soil erosion and sediment yield.


Sign in / Sign up

Export Citation Format

Share Document