Present-day overpressure in southern Tunisia: Characterization, possible causes and implications for drilling operations

Author(s):  
Dhaou Akrout ◽  
Riadh Ahmadi ◽  
Eric Mercier ◽  
Mabrouk Montacer
2021 ◽  
pp. 1-14
Author(s):  
Chaouki Khalfi ◽  
Riadh Ahmadi

Summary This study consists of an assessment of the ecological accident implicating the Continental Intercalaire-11 (CI-11) water well located in Jemna oasis, southern Tunisia. The CI-11 ecological accident manifested in 2014 with a local increase of the complex terminal (CT) shallow water table salinity and temperature. Then, this phenomenon started to spread over the region of Jemna, progressively implicating farther wells. The first investigation task consisted of logging the CI-11 well. The results revealed an impairment of the casing and cement of a huge part of the 9⅝ in. production casing. Historical production records show that the problems seem to have started in 1996 when a sudden production loss rate occurred. These deficiencies led to the CI mass-water flowing behind the casing from the CI to the CT aquifers. This ecological accident is technically called internal blowout, where water flows from the overpressurized CI groundwater to the shallower CT groundwater. Indeed, the upward CI hot-water flow dissolved salts from the encountered evaporite-rich formations of the Lower Senonian series, which complicated the ecological consequences of the accident. From the first signs of serious water degradation in 2014 through the end of 2018, several attempts have been made to regain control of annular upward water flow. However, the final CT groundwater parameters indicate that the problem is not properly fixed and communication between the two involved aquifers still persists. This accident is similar to the OKN-32 case that occurred in the Berkaoui oil field, southern Algeria, in 1986, and included the same CI and CT aquifers. Furthermore, many witnesses claim that other accidental communications are probably occurring in numerous deep-drilled wells in this region. Concludingly, Jemna CI-11, Berkaoui OKN-32, and probably many other similar accident cases could be developing regional ecological disasters by massive water resource losses. The actual situation is far from being under control and the water contamination risk remains very high. In both accidents, the cement bond failure and the choice of the casing point are the main causes of the internal blowout. Therefore, we recommend (1) a regional investigation and risk assessment plan that might offer better tools to predict and detect earlier wellbore isolation issues and (2) special attention to the cement bond settlement, evaluation, and preventative logging for existing wells to ensure effective sealing between the two vulnerable water table resources. Besides, in the CI-11 well accident, the recovery program was not efficient and there was no clear action plan. This increased the risk of action failure or time waste to regain control of the well. Consequently, we suggest preparing a clear and efficient action plan for such accidents to reduce the ecological consequences. This requires further technical detailed study of drilling operations and establishment of a suitable equipment/action plan to handle blowout and annular production accidents.


2016 ◽  
pp. 3524-3528
Author(s):  
Casey Ray McMahon

In this paper, I discuss the theory behind the use of a dense, concentrated neutron particle-based beam. I look at the particle based physics behind such a beam, when it is focused against solid material matter. Although this idea is still only theoretical, it appears that such a beam may be capable of disrupting the stability of the atoms within solid matter- in some cases by passing great volumes of neutrons between the electron and nucleus thus effectively “shielding” the electron from the charge of the nucleus. In other cases, by disrupting the nucleus by firing neutrons into it, disrupting the nucleus and weakening its bond on electrons. In either case- the resulting effect would be a disruption of the atom, which in the case of material matter would cause said material matter to fail, which would appear to the observer as liquification with some plasma generation. Thus, a dense neutron particle based beam could be used to effectively liquefy material matter. Such a beam could bore through rock, metal, or even thick, military grade armour, like that used on tanks- causing such materials to rapidly liquefy. The denser and thicker the neutron beam, the more devastating the effect of the beam- thus the faster material matter will liquefy and the greater the area of liquification. Such a beam would have applications in Defence, mining and drilling operations.


Sign in / Sign up

Export Citation Format

Share Document