oil and gas drilling
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 35)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Javed Haneef ◽  
Assad Sheraz

AbstractOil and gas well drilling is the most important and complex task for oil and gas exploration. It is not necessary that design and execution complexity remain the same for two different wells even in the same field. It is possible to have a very complex well to drill after a very straightforward simple well being drilled earlier in the same field. Making correlation or comparison of any of the two or more than two oil and gas drilling wells is an ongoing debate in the petroleum industry. Generally, companies compare the oil and gas drilling wells on a single or two parameters, for example: time versus depth, directional trajectories, well cost and/or other single factors in disengagement of one another. In order to compare two different types of oil and gas drilling wells, having distinctive design, drilling and fluid program and challenges, a scientific rating system is required, which can relate various wells with one another. In this research paper, a calculator named Well Complexity Calculator has been developed to measure the complexity of the oil and gas well drilling by using different parameters. All these parameters are commonly affecting the drilling program and its execution. Secondly, a methodology is designed for integration of Well Complexity Calculator into standard Well Engineering Management System/Well Delivery System for better execution of drilling program. Fifty-one (51) oil and gas drilling well complexity parameters have been utilized to develop Well Complexity Calculator, where they are categorized into three main complexities types named Design Well Complexity, Geological Well Complexity and Project Well Complexity. Design and Geological Well Complexities combine to form Drilling Well Complexity, and then Drilling Well Complexity and Project Well Complexity combine to form Well Complexity. Median, Mode and Monte Carlo simulation techniques were chosen to develop the calculator where Median showed best suited results and was accordingly chosen for the final calculator. Sixty-six (66) actual oil and gas wells’ camouflaged drilling data were used to analyze and fine tune the developed Well Complexity Calculator. Output complexities of these wells were falling in different complexity levels. Moreover, it was seen that the number of low, high and medium complexity wells was different for Design, Geological, Project, Drilling and Well Complexities which is in line with the real-world scenario.The findings and the output Well Complexity Calculator can be very useful at any stage from initial planning to close-out of a well. Without the application of a system like Well Complexity Calculator, wells are categorized as low, medium or high complexity based on either two to three major parameters or based on qualitative assessment of team involved in the project. Here, step-by-step procedure is developed and explained by which any company involved in Drilling and Well Operations can develop their own Well Complexity Calculator and then accordingly integrate it into their Well Engineering Management System/Well Delivery System.


2021 ◽  
Author(s):  
Junichi Sugiura ◽  
Ramon Lopez ◽  
Francisco Borjas ◽  
Steve Jones ◽  
John McLennan ◽  
...  

Abstract Geothermal energy is used in more than 20 countries worldwide and is a clean, reliable, and relatively available energy source. Nevertheless, to make geothermal energy available anywhere in the world, technical and economic challenges need to be addressed. Drilling especially is a technical challenge and comprises a significant part of the geothermal development cost. An enhanced geothermal system (EGS) is a commercially viable thermal reservoir where two wells are interconnected by some form of hydraulic stimulation. In a commercial setting, fluid is injected into this hot rock and passes between wells through a network of natural and induced fractures to transport heat to the surface system for electricity generation. To construct EGS wells, vertical and directional drilling is necessary with purpose-built drilling and steering equipment. This is an application where oil-and-gas drilling tools and techniques can be applied. A recent well, 16A(78)-32, drilled as part of the US Department of Energy's (DOE's) Utah Frontier Observatory for Research in Geothermal Energy (FORGE) program, highlights some of the technical challenges, which include drilling an accurate vertical section, a curve section, and a 5300-ft 65° tangent section in a hard granitic formation at temperatures up to 450°F (232°C). Extensive downhole temperature simulations were performed to select fit-for-purpose drilling equipment such as purely mechanical vertical drilling tools, instrumented steerable downhole motors, measurement-while-drilling (MWD) tools, and embedded high-frequency drilling dynamics recorders. Downhole and surface drilling dynamics data were used to fine- tune bit design and motor power section selection and continuously improve the durability of equipment, drilling efficiency, and footage drilled. Drilling optimization techniques used in oil and gas settings were successfully applied to this well, including analysis of data from drilling dynamics sensors embedded in the steerable motors and vertical drilling tools, surface surveillance of mechanical specific energy (MSE), and adopting a drilling parameter roadmap to improve drilling efficiency to minimize drilling dysfunctions and equipment damages. Through drilling optimization practices, the instrumented steerable motors with proper bit selections were able to drill more than 40 ft/hr on average, doubling the rate of penetration (ROP), footage, and run length experienced in previous granite wells. This paper presents a case study in which cutting-edge oil-and-gas drilling technologies were successfully applied to reduce the geothermal well drilling time by approximately half.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Muhammad Mujtaba Asad ◽  
Fahad Sherwani ◽  
Razali Bin Hassan ◽  
Zafarullah Sahito ◽  
Najmonnisa Khan

Purpose Oil and gas industries play a major role for the growth of world economy, and drilling operation is considered as most important and hazardous procedure at the same time for oil and gas drilling crew because of the lack of effectual and user-friendly safety and health teaching and learning aids with updated knowledge and training capability. According to the previous studies, there is an urgent industrial need for user interactive technological aid for enhancing the teaching and learning of oil and gas drilling crew and safety officials at onshore and offshore drilling domains to fulfill the requirements of fourth industrial and educational revolutions. Therefore, this proposed virtual reality (VR)-based Hazard Free Operation (HAZFO Expert 2.0) teaching and learning aid to reduce the workplace risk and hazards to enhance the vestibule and experiential learning performance of oil and gas drilling process at Pakistani drilling industries. Design/methodology/approach In this proposed product based study for interactive teaching and learning application for industry, sequential explanatory research design will be adopted to prevent the accidents according to the modern technologies in this era of IR 4.0. Whereas, for the development of VR-based educational aid for Pakistani oil and gas industries, Autodesk 3ds Max, visual studio and MySQL software’s will be used. Findings This new concept of VR-based interactive educational aid (HAZFO Expert 2.0) for accident prevention at oil and gas drilling industries will be based on potential hazards and their suitable controlling measures for onshore and offshore drilling sites. Practical implications VR-based interactive educational aid for oil and gas workforce will facilitate the health and safety professionals for the elimination of potential hazards associated with oil and gas drilling activities to the next level of identification of hazards which has been identified in HAZFO Expert 1.0 at onshore and offshore drilling sites. Originality/value This proposed VR-based interactive educational aid for safe drilling process will be the first visual teaching and e-learning technology which covers all onshore and offshore drilling operations in Pakistani oil and gas industries and provides effective hazard controlling strategies to overcome challenging industrial hazards.


2021 ◽  
Vol 9 (4) ◽  
pp. 404
Author(s):  
Dejan Brkić ◽  
Pavel Praks

The Special Issue “Safe, Secure and Sustainable Oil and Gas Drilling, Exploitation and Pipeline Transport Offshore” was focused on regulations, including technical and operational standards, safety technologies, and organizational factors, which can greatly contribute to the occurrence of accidents in the offshore oil and gas sector [...]


Sign in / Sign up

Export Citation Format

Share Document