scholarly journals Monitoring surface deformation of permafrost in Wudaoliang Region, Qinghai–Tibet Plateau with ENVISAT ASAR data

Author(s):  
Rongxing Li ◽  
Zhenshi Li ◽  
Jiangping Han ◽  
Ping Lu ◽  
Gang Qiao ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4464
Author(s):  
Jing Wang ◽  
Chao Wang ◽  
Hong Zhang ◽  
Yixian Tang ◽  
Xuefei Zhang ◽  
...  

The dynamic changes of the thawing and freezing processes of the active layer cause seasonal subsidence and uplift over a large area on the Qinghai–Tibet Plateau due to ongoing climate warming. To analyze and investigate the seasonal freeze–thaw process of the active layer, we employ the new small baseline subset (NSBAS) technique based on a piecewise displacement model, including seasonal deformation, as well as linear and residual deformation trends, to retrieve the surface deformation of the Beiluhe basin. We collect 35 Sentinel-1 images with a 12 days revisit time and 9 TerraSAR-X images with less-than two month revisit time from 2018 to 2019 to analyze the type of the amplitude of seasonal oscillation of different ground targets on the Beiluhe basin in detail. The Sentinel-1 results show that the amplitude of seasonal deformation is between −62.50 mm and 11.50 mm, and the linear deformation rate ranges from −24.50 mm/yr to 5.00 mm/yr (2018–2019) in the study area. The deformation trends in the Qinghai–Tibet Railway (QTR) and Qinghai–Tibet Highway (QTH) regions are stable, ranging from −18.00 mm to 6 mm. The InSAR results of Sentinel-1 and TerraSAR-X data show that seasonal deformation trends are consistent, exhibiting good correlations 0.78 and 0.84, and the seasonal and linear deformation rates of different ground targets are clearly different on the Beiluhe basin. Additionally, there are different time lags between the maximum freezing uplift or thawing subsidence and the maximum or minimum temperature for the different ground target areas. The deformation values of the alpine meadow and floodplain areas are higher compared with the alpine desert and barren areas, and the time lags of the freezing and thawing periods based on the Sentinel-1 results are longest in the alpine desert area, that is, 86 days and 65 days, respectively. Our research has important reference significance for the seasonal dynamic monitoring of different types of seasonal deformation and the extensive investigations of permafrost in Qinghai Tibet Plateau.


2021 ◽  
Vol 32 (6) ◽  
pp. 1284-1303
Author(s):  
Yang Honglei ◽  
Jiang Qiao ◽  
Han Jianfeng ◽  
Kang Ki-Yeob ◽  
Peng Junhuan

Author(s):  
Z. Li ◽  
B. Tian ◽  
P. Tang

A thermokarst lake is an important indicator of changes in climate, which cause considerable thermal distribution to the surrounding permafrost. The imaging radar has demonstrated the capability to determine when and which lakes freeze or do not freeze. In this paper, the temporal variability of C-band backscattering of thermokarst lakes at Beiluhe test area, is located on the central Qinghai- Tibet Plateau (QTP), were examined by 45 ENVISAT-ASAR imageries acquired in freeze up, ice duration and break-up stages. The SAR behaviour response for lake ice change are analysed with ASAR observation in experiments area. The results showed that the ice layer volume scattering and ice-water surface scattering were the two major scattering components in C-band VV polarization, which is also affected by the increase of bubble size, ice density and roughness of ice-water interface. According to this study, the timing of lake ice-on in fall and ice-off in spring for this geographic region can be identified in radar images by comparing radar backscatter from lake ice to its surrounding alpine meadow. When ice duration, the radar signature proved to be able to monitor the ice thickness over lake and deformation around the lake.


Author(s):  
T. Chang ◽  
J. Han ◽  
Z. Li ◽  
Y. Wen ◽  
T. Hao ◽  
...  

Abstract. Active layer thickness (ALT) is an important index to reflect the stability of permafrost. The retrieval of ALT based on Interferometric Synthetic Aperture Radar (InSAR) technology has been investigated recently in permafrost research. However, most of such studies are carried out in a limited extend and relatively short temporal coverage. The combination of temporal-spatial multi-layer soil moisture data and multi-temporal InSAR is a promising approach for the large-scale characterization of ALT. In this study, we employed Small Baseline Subset Interferometry (SBAS-InSAR) technology to obtain the seasonal surface deformation from radar images of Envisat and Sentinel-1 in a permafrost region of Qinghai-Tibet Plateau (QTP). We attempt to verify and calibrate the temporal-spatial multi-layer soil moisture product in combination with the in-situ data. Based on the land subsidence data and the temporal-spatial multi-layer soil moisture data, we further improve method to retrieve the ALT information. This paper describes the progress so far and point out the future work.


Sign in / Sign up

Export Citation Format

Share Document