Ground surface deformation characteristics of different alpine-grassland types in the permafrost zones of Qinghai-Tibet Plateau

2021 ◽  
Vol 41 (6) ◽  
Author(s):  
王志伟,岳广阳,吴晓东 WANG Zhiwei
2021 ◽  
Vol 166 ◽  
pp. 104093
Author(s):  
Fei Peng ◽  
Wenjuan Zhang ◽  
Chimin Lai ◽  
Chengyang Li ◽  
Quangang You ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4464
Author(s):  
Jing Wang ◽  
Chao Wang ◽  
Hong Zhang ◽  
Yixian Tang ◽  
Xuefei Zhang ◽  
...  

The dynamic changes of the thawing and freezing processes of the active layer cause seasonal subsidence and uplift over a large area on the Qinghai–Tibet Plateau due to ongoing climate warming. To analyze and investigate the seasonal freeze–thaw process of the active layer, we employ the new small baseline subset (NSBAS) technique based on a piecewise displacement model, including seasonal deformation, as well as linear and residual deformation trends, to retrieve the surface deformation of the Beiluhe basin. We collect 35 Sentinel-1 images with a 12 days revisit time and 9 TerraSAR-X images with less-than two month revisit time from 2018 to 2019 to analyze the type of the amplitude of seasonal oscillation of different ground targets on the Beiluhe basin in detail. The Sentinel-1 results show that the amplitude of seasonal deformation is between −62.50 mm and 11.50 mm, and the linear deformation rate ranges from −24.50 mm/yr to 5.00 mm/yr (2018–2019) in the study area. The deformation trends in the Qinghai–Tibet Railway (QTR) and Qinghai–Tibet Highway (QTH) regions are stable, ranging from −18.00 mm to 6 mm. The InSAR results of Sentinel-1 and TerraSAR-X data show that seasonal deformation trends are consistent, exhibiting good correlations 0.78 and 0.84, and the seasonal and linear deformation rates of different ground targets are clearly different on the Beiluhe basin. Additionally, there are different time lags between the maximum freezing uplift or thawing subsidence and the maximum or minimum temperature for the different ground target areas. The deformation values of the alpine meadow and floodplain areas are higher compared with the alpine desert and barren areas, and the time lags of the freezing and thawing periods based on the Sentinel-1 results are longest in the alpine desert area, that is, 86 days and 65 days, respectively. Our research has important reference significance for the seasonal dynamic monitoring of different types of seasonal deformation and the extensive investigations of permafrost in Qinghai Tibet Plateau.


2016 ◽  
Vol 13 (22) ◽  
pp. 6273-6284 ◽  
Author(s):  
Shuhua Yi ◽  
Jianjun Chen ◽  
Yu Qin ◽  
Gaowei Xu

Abstract. There is considerable controversy about the effects of plateau pika (Ochotona curzoniae, hereafter pika) on alpine grassland on the Qinghai-Tibet Plateau (QTP). On the one hand, pika is considered a keystone species. On the other hand, it is being poisoned. Although significant efforts have been made to study the effects of pika at a quadrat scale ( ∼  m2), our knowledge about its distribution and effects at a larger scale is very limited. In this study, we investigated the direct effects, i.e., burying and grazing, of pika by upscaling field sampling at a quadrat scale to a plot scale ( ∼  1000 m2) by aerial photographing. Altogether 168 plots were set on four different types of alpine grassland in a semiarid basin on the QTP. Results showed that (1) the effects of pika pile burying on the reduction of vegetation cover, biomass, soil carbon, and nitrogen were less than 10 %, which was much smaller than the effects of bald patches; and (2) pika consumed 8–21 % of annual net primary production of grassland. We concluded that the direct burying and grazing effects of pika on alpine grassland were minor in this region. The quadcopter is an efficient and economic tool for long-term repeated monitoring over large regions for further understanding the role of pika.


2017 ◽  
Vol 910 ◽  
pp. 012028 ◽  
Author(s):  
Haiping Ma ◽  
Yanqiang Wu ◽  
Jian’gang Feng ◽  
Rong Xu ◽  
Shayi Wu ◽  
...  

2021 ◽  
Author(s):  
Ailin Zhang ◽  
Shixin Wu ◽  
Fanjiang Zeng ◽  
Yong Jiang ◽  
Ruzhen Wang ◽  
...  

Abstract Purpose: In grassland ecosystems, plant functional group (PFG) is an important bridge connecting individual plant to community system. Grassland ecosystem is the main ecosystem type on the Qinghai-Tibet Plateau, so the change of community structure of grassland vegetation.Methods: The Altun Mountains in the northern part of the Qinghai-Tibet Plateau were used as the study area to investigate the PFGs of a high-altitude (> 3700m) grassland in desert areas and their response to temperature and moisture.Results: The main functional groups were forbs and grasses, and the importance values (IV) accounted for more than 50%. Plant species diversity of the community was influenced by the functional groups of legumes IV, and the increase of legumes would promote the increase of plant community diversity. The C, N, P of plant communities were mainly influenced by forbs and grasses, and the relationship between forbs and C, N, P was opposite to that of grasses. There was a positive correlation between forbs and soil TP; a negative correlation between grasses and soil TP; a positive correlation between legumes with soil SOC and TN; and a positive correlation between sedge and soil SOC. However, under the influence of different hydrothermal conditions, forbs and grasses as dominant functional groups had stronger correlation with community and soil nutrients. Conclusions: This indicated that the PFGs with the largest proportion in the community had the greatest influence on the community. This provides a basis for the study of alpine grassland community development and ecosystem function under alpine grassland.


Sign in / Sign up

Export Citation Format

Share Document