thermokarst lake
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 50)

H-INDEX

24
(FIVE YEARS 5)

2022 ◽  
Vol 9 ◽  
Author(s):  
Lydia Stolpmann ◽  
Gesine Mollenhauer ◽  
Anne Morgenstern ◽  
Jens S. Hammes ◽  
Julia Boike ◽  
...  

The Arctic is rich in aquatic systems and experiences rapid warming due to climate change. The accelerated warming causes permafrost thaw and the mobilization of organic carbon. When dissolved organic carbon is mobilized, this DOC can be transported to aquatic systems and degraded in the water bodies and further downstream. Here, we analyze the influence of different landscape components on DOC concentrations and export in a small (6.45 km2) stream catchment in the Lena River Delta. The catchment includes lakes and ponds, with the flow path from Pleistocene yedoma deposits across Holocene non-yedoma deposits to the river outlet. In addition to DOC concentrations, we use radiocarbon dating of DOC as well as stable oxygen and hydrogen isotopes (δ18O and δD) to assess the origin of DOC. We find significantly higher DOC concentrations in the Pleistocene yedoma area of the catchment compared to the Holocene non-yedoma area with medians of 5 and 4.5 mg L−1 (p < 0.05), respectively. When yedoma thaw streams with high DOC concentration reach a large yedoma thermokarst lake, we observe an abrupt decrease in DOC concentration, which we attribute to dilution and lake processes such as mineralization. The DOC ages in the large thermokarst lake (between 3,428 and 3,637 14C y BP) can be attributed to a mixing of mobilized old yedoma and Holocene carbon. Further downstream after the large thermokarst lake, we find progressively younger DOC ages in the stream water to its mouth, paired with decreasing DOC concentrations. This process could result from dilution with leaching water from Holocene deposits and/or emission of ancient yedoma carbon to the atmosphere. Our study shows that thermokarst lakes and ponds may act as DOC filters, predominantly by diluting incoming waters of higher DOC concentrations or by re-mineralizing DOC to CO2 and CH4. Nevertheless, our results also confirm that the small catchment still contributes DOC on the order of 1.2 kg km−2 per day from a permafrost landscape with ice-rich yedoma deposits to the Lena River.


Author(s):  
Jennifer Korosi ◽  
Kristen Coleman ◽  
Grace N Hoskin ◽  
Amanda Little ◽  
Emily Stewart ◽  
...  

Geographic context matters when trying to understand how permafrost thaw impacts northern freshwater biodiversity in a warming climate. Most risk to freshwater from thawing permafrost is associated with abrupt thaw processes known as thermokarst. Lake sediments can provide a record of thermokarst landscape development and associated biogeochemical and biodiversity trends over long timescales, providing a tool to link thermokarst geomorphology with freshwater biodiversity. We describe how paleolimnology, with its inherent emphasis on long-term perspectives, can characterize the shifting geographic template of warming thermokarst landscapes and its implications for biodiversity. We suggest aligning thermokarst lake paleolimnological research with hypothesis-testing frameworks used by permafrost hydrologists and biogeochemists and by the Freshwater Circumpolar Biodiversity Monitoring Program, and advocate for knowledge co-production with northern Indigenous communities. Lastly, we stress the importance of considering geographic context in the choice of study sites to ensure that diverse thermokarst landscapes are represented (especially those most vulnerable to warming) and that the fine-scale differences in limnological settings that influence ecosystem response to thermokarst stressors are accounted for.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Lingling Li ◽  
Bin Xue

AbstractNorthern lakes are important sources of CH4 in the atmosphere under the background of permafrost thaw and winter warming. We synthesize studies on thermokarst lakes, including various carbon sources for CH4 emission and the influence of thermokarst drainage on carbon emission, to show the evasion potential of ancient carbon that stored in the permafrost and CH4 emission dynamics along with thermokarst lake evolution. Besides, we discuss the lake CH4 dynamics in seasonally ice-covered lakes, especially for under-ice CH4 accumulation and emission during spring ice melt and the possible influential factors for CH4 emission in ice-melt period. We summarize the latest findings and point out that further research should be conducted to investigate the possibility of abundant ancient carbon emission from thermokarst lakes under climate warming and quantify the contribution of ice-melt CH4 emission from northern lakes on a large scale.


2021 ◽  
Author(s):  
Noriaki Ohara ◽  
Benjamin M. Jones ◽  
Andrew D. Parsekian ◽  
Kenneth M. Hinkel ◽  
Katsu Yamatani ◽  
...  

Abstract. Thermokarst lake dynamics, which plays an essential role in carbon release due to permafrost thaw, is affected by various geomorphological processes. In this study, we derive a three-dimensional (3D) Stefan equation to characterize talik geometry under a hypothetical thermokarst lake in the continuous permafrost region. Using the Euler equation in the calculus of variations, the lower bounds of the talik were determined as an extremum of the functional describing the phase boundary area with a fixed total talik volume. We demonstrate that the semi-ellipsoid geometry of the talik is optimal for minimizing the total permafrost thaw under the lake for a given annual heat supply. The model predicting ellipsoidal talik geometry was verified by talik thickness observations using transient electromagnetic (TEM) soundings in Peatball Lake on the Arctic Coastal Plain (ACP) of Alaska. The lake width-depth ratio of the elliptic talik can characterize the energy flux anisotropy in the permafrost although the lake bathymetry cross section may not be elliptic due to the presence of near-surface ice-rich permafrost. This theory suggests that talik development stabilizes thermokarst lakes by ground subsidence due to permafrost thaw while wind-induced waves and currents are likely responsible for the elongation and orientation of thermokarst lakes in certain regions such as the ACP of northern Alaska.


2021 ◽  
pp. 1-3
Author(s):  
Jana M.E. Tondu ◽  
Kevin W. Turner ◽  
Johan A. Wiklund ◽  
Brent B. Wolfe ◽  
Roland I. Hall ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1605
Author(s):  
Zixuan Ni ◽  
Xiangfei Lü ◽  
Guanwen Huang

Variations in weather conditions have a significant impact on thermokarst lakes, such as the sub-lake permafrost thawing caused by global warming. Based on the analysis of Landsat sensor images by ENVI TM 5.3 software, the present study quantitatively determined the area of the thermokarst lakes and the area of the single selected thermokarst lake in the Beilu River Basin from 2000 to 2016. In an effort to explore the reason for changes in the area of thermokarst lakes, this work used Pearson correlation to analyze the relationship between the area of thermokarst lakes and precipitation, wind speed, average temperature, and relative humidity as obtained from the weather station Wudaoliang. Furthermore, this study used multiple linear regression to comprehensively study the correlation between the meteorological factors and changes in the thermokarst lake area. In this case, the total lake-area changes and the single-area changes exhibited unique patterns. The results showed that the total lake area and the single selected lake area increased year by year. Furthermore, the effects of the four meteorological factors defined above on the total area of typical thermokarst lakes are different from the effects of these factors on the single selected thermokarst lake. While the total area of specific thermokarst lakes exhibited a time lag in their response to the four factors, the surface area of the selected thermokarst lake responded to these factors on time. The dominant meteorological factor contributing to total lake area variations of typical thermokarst lakes is the increasing annual average temperature. The Pearson correlation coefficient between the total area and the annual average temperature is 0.717, suggesting a statistically significant correlation between the two factors. For the selected thermokarst lake, the surface area is related to annual average temperature and wind speed. As a result, wind speed and average temperature could infer the variation law on the thermokarst lake due to the linear fitting equation between area and significant meteorological factors.


Sign in / Sign up

Export Citation Format

Share Document