scholarly journals Asymmetric coloring of locally finite graphs and profinite permutation groups: Tucker's Conjecture confirmed

Author(s):  
László Babai
COMBINATORICA ◽  
1982 ◽  
Vol 2 (3) ◽  
pp. 229-235 ◽  
Author(s):  
François Bry ◽  
Michel Las Vergnas

10.37236/6083 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Johannes Carmesin

Answering a question of Diestel, we develop a topological notion of gammoids in infinite graphs which, unlike traditional infinite gammoids, always define a matroid.As our main tool, we prove for any infinite graph $G$ with vertex-sets $A$ and $B$, if every finite subset of $A$ is linked to $B$ by disjoint paths, then the whole of $A$ can be linked to the closure of $B$ by disjoint paths or rays in a natural topology on $G$ and its ends.This latter theorem implies the topological Menger theorem of Diestel for locally finite graphs. It also implies a special case of the infinite Menger theorem of Aharoni and Berger.


10.37236/1211 ◽  
1995 ◽  
Vol 2 (1) ◽  
Author(s):  
Carl Droms ◽  
Brigitte Servatius ◽  
Herman Servatius

We expand on Tutte's theory of $3$-blocks for $2$-connected graphs, generalizing it to apply to infinite, locally finite graphs, and giving necessary and sufficient conditions for a labeled tree to be the $3$-block tree of a $2$-connected graph.


2008 ◽  
Vol 22 (4) ◽  
pp. 1381-1392 ◽  
Author(s):  
Henning Bruhn ◽  
Xingxing Yu

1971 ◽  
Vol 69 (3) ◽  
pp. 401-407 ◽  
Author(s):  
R. A. Brualdi

1. Tutte(10) has given necessary and sufficient conditions in order that a finite graph have a perfect matching. A different proof was given by Gallai(4). Berge(1) (and Ore (7)) generalized Tutte's result by determining the maximum cardinality of a matching in a finite graph. In his original proof Tutte used the method of skew symmetric determinants (or pfaffians) while Gallai and Berge used the much exploited method of alternating paths. Another proof of Berge's theorem, along with an efficient algorithm for constructing a matching of maximum cardinality, was given by Edmonds (2). In another paper (12) Tutte extended his conditions for a perfect matching to locally finite graphs.


Sign in / Sign up

Export Citation Format

Share Document