scholarly journals Topological Infinite Gammoids, and a New Menger-Type Theorem for Infinite Graphs

10.37236/6083 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Johannes Carmesin

Answering a question of Diestel, we develop a topological notion of gammoids in infinite graphs which, unlike traditional infinite gammoids, always define a matroid.As our main tool, we prove for any infinite graph $G$ with vertex-sets $A$ and $B$, if every finite subset of $A$ is linked to $B$ by disjoint paths, then the whole of $A$ can be linked to the closure of $B$ by disjoint paths or rays in a natural topology on $G$ and its ends.This latter theorem implies the topological Menger theorem of Diestel for locally finite graphs. It also implies a special case of the infinite Menger theorem of Aharoni and Berger.

10.37236/6773 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Karl Heuer

We state a sufficient condition for the square of a locally finite graph to contain a Hamilton circle, extending a result of Harary and Schwenk about finite graphs. We also give an alternative proof of an extension to locally finite graphs of the result of Chartrand and Harary that a finite graph not containing $K^4$ or $K_{2,3}$ as a minor is Hamiltonian if and only if it is $2$-connected. We show furthermore that, if a Hamilton circle exists in such a graph, then it is unique and spanned by the $2$-contractible edges. The third result of this paper is a construction of a graph which answers positively the question of Mohar whether regular infinite graphs with a unique Hamilton circle exist.


2001 ◽  
Vol 131 (3) ◽  
pp. 427-443 ◽  
Author(s):  
B. KRÖN

There are different definitions of ends in non-locally-finite graphs which are all equivalent in the locally finite case. We prove the compactness of the end-topology that is based on the principle of removing finite sets of vertices and give a proof of the compactness of the end-topology that is constructed by the principle of removing finite sets of edges. For the latter case there exists already a proof in [1], which only works on graphs with countably infinite vertex sets and in contrast to which we do not use the Theorem of Tychonoff. We also construct a new topology of ends that arises from the principle of removing sets of vertices with finite diameter and give applications that underline the advantages of this new definition.


2000 ◽  
Vol 10 (05) ◽  
pp. 591-602 ◽  
Author(s):  
VOLODYMYR NEKRASHEVYCH

We prove a criterion for a group to be representable as a vertex stabilizer of a transitive action on a locally finite graph. We show that actions with finite vertex stabilizers are open in a natural topology.


COMBINATORICA ◽  
1982 ◽  
Vol 2 (3) ◽  
pp. 229-235 ◽  
Author(s):  
François Bry ◽  
Michel Las Vergnas

10.37236/1211 ◽  
1995 ◽  
Vol 2 (1) ◽  
Author(s):  
Carl Droms ◽  
Brigitte Servatius ◽  
Herman Servatius

We expand on Tutte's theory of $3$-blocks for $2$-connected graphs, generalizing it to apply to infinite, locally finite graphs, and giving necessary and sufficient conditions for a labeled tree to be the $3$-block tree of a $2$-connected graph.


2008 ◽  
Vol 22 (4) ◽  
pp. 1381-1392 ◽  
Author(s):  
Henning Bruhn ◽  
Xingxing Yu

Sign in / Sign up

Export Citation Format

Share Document