Hydrothermal synthesis of size-controllable Yttrium Orthovanadate (YVO4) nanoparticles and its application in photocatalytic degradation of direct blue dye

2012 ◽  
Vol 532 ◽  
pp. 55-60 ◽  
Author(s):  
R.M. Mohamed ◽  
F.A. Harraz ◽  
I.A. Mkhalid
2013 ◽  
Vol 13 (7) ◽  
pp. 4975-4980 ◽  
Author(s):  
R. M. Mohamed ◽  
I. A. Mkhalid ◽  
S. A. Al-Thabaiti ◽  
Mohamed Mokhtar

2017 ◽  
Vol 17 ◽  
pp. 194-201
Author(s):  
Caroline Ponraj ◽  
D. Prabhakaran ◽  
G. Vinitha ◽  
Joseph Daniel

Citric acid assisted auto combustion method was used in the synthesis of BiFeO3 nanoparticles. The synthesized nanoparticles were characterised using X-ray powder diffraction, Scanning electron Microscope, BET surface area analysis, UV-Visible Diffuse Reflectance Spectrometer and Vibratory Sample Magnetometer. The photocatalytic behaviour of the BFO nanoparticles has been studied by the degradation of the direct blue dye. It is observed that BFO shows a good photocatalytic degradation of dye in the visible light irradiation. The effect of pH, catalyst quantity has been studied. The optimum condition is identified as pH 2 and 150mg of the photocatalyst in 10ppm of the dye solution. The magnetic property of BiFeO3at room temperature helps in the efficient removal of them from the treated dye solution. The ability of BiFeO3 nanoparticles to absorb the solar energy and using it for the treatment of water gives it an upper hand over other photo catalysts like Titanium Oxide (TiO2) and Zinc Oxide (ZnO).


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Emmanuel Kweinor Tetteh ◽  
Sudesh Rathilal

This study presents a hybridized photocatalyst with adsorbate as a promising nanocomposite for photoremediation of wastewater. Photocatalytic degradation of bromophenol blue (BPB) in aqueous solution under UV-irradiation of wavelength 400 nm was carried out with TiO2 doped with activated carbon (A) and clinoptilolite (Z) via the co-precipitation technique. The physiochemical properties of the nanocomposite (A–TiO2 and Z–TiO2) and TiO2 were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy. Results of the nanocomposite (A–TiO2 and Z–TiO2) efficiency was compared to that with the TiO2, which demonstrated their adsorption and synergistic effect for the removal of chemical oxygen demand (COD) and color from the wastewater. At an optimal load of 4 g, the photocatalytic degradation activity (Z–TiO2 > A–TiO2 > TiO2) was found favorably by the second-order kinetic model. Consequently, the Langmuir adsorption isotherms favored the nanocomposites (Z–TiO2 > A–TiO2), whereas that of the TiO2 fitted very well on the Freundlich isotherm approach. Z–TiO2 evidently exhibited a high photocatalytic efficacy of decomposition over 80% of BPB (COD) at reaction rate constant (k) and coefficient of determination (R2) values of 5.63 × 10−4 min−1 and 0.989, respectively.


2021 ◽  
Vol 22 (1) ◽  
pp. 149-158
Author(s):  
Neda Eisazadeh ◽  
Hossein Eisazadeh ◽  
Moein Ghadakpour

2021 ◽  
pp. 149830
Author(s):  
Fabiola Pantò ◽  
Zainab Dahrouch ◽  
Abhirup Saha ◽  
Salvatore Patanè ◽  
Saveria Santangelo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document