Emission mechanism in single and co-doped Tb:Eu:CaZnOS

2021 ◽  
Vol 868 ◽  
pp. 159007
Author(s):  
Riccardo Corpino ◽  
Damiano Angioni ◽  
Jessica Satta ◽  
Franca Chika Ugbo ◽  
Daniele Chiriu ◽  
...  
Keyword(s):  
1996 ◽  
Vol 06 (C5) ◽  
pp. C5-107-C5-112 ◽  
Author(s):  
V. V. Zhirnov
Keyword(s):  

2008 ◽  
Author(s):  
Xiaomei Guo ◽  
Kewen Kevin. Li ◽  
Xuesheng Chen ◽  
Yingyin Kevin. Zou ◽  
Hua Jiang

2020 ◽  
Author(s):  
Weihong Lai ◽  
Heng Wang ◽  
Quan jiang ◽  
Zichao Yan ◽  
Hanwen Liu ◽  
...  

<p>Herein, we develop a non-selective charge compensation strategy to prepare multi-single-atom doped carbon (MSAC) in which a sodium p-toluenesulfonate (PTS-Na) doped polypyrrole (S-PPy) polymer is designed to anchor discretionary mixtures of multiple metal cations, including iron (Fe<sup>3+</sup>), cobalt (Co<sup>3+</sup>), ruthenium (Ru<sup>3+</sup>), palladium (Pd<sup>2+</sup>), indium (In<sup>3+</sup>), iridium (Ir<sup>2+</sup>), and platinum (Pt<sup>2+</sup>) . As illustrated in Figure 1, the carbon surface can be tuned with different level of compositional complexities, including unary Pt<sub>1</sub>@NC, binary (MSAC-2, (PtFe)<sub>1</sub>@NC), ternary (MSAC-3, (PtFeIr)<sub>1</sub>@NC), quaternary (MSAC-4, (PtFeIrRu)<sub>1</sub>@NC), quinary (MSAC-5, (PtFeIrRuCo)<sub>1</sub>@NC), senary (MSAC-6, (PtFeIrRuCoPd)<sub>1</sub>@NC), and septenary (MSAC-7, (PtFeIrRuCoPdIn)<sub>1</sub>@NC) samples. The structural evolution of carbon surface dictates the activities of both ORR and HER. The senary MSAC-6 achieves the ORR mass activity of 18.1 A·mg<sub>metal</sub><sup>-1</sup> at 0.9 V (Vs reversible hydrogen electrode (RHE)) over 30K cycles, which is 164 times higher than that of commercial Pt/C. The quaternary MSAC-4 presented a comparable HER catalytic capability with that of Pt/C. These results indicate that the highly complexed carbon surface can enhance its ability over general electrochemical catalytic reactions. The mechanisms regarding of the ORR and HER activities of the alternated carbon surface are also theoretically and experimentally investigated in this work, showing that the synergistic effects amongst the co-doped atoms can activate or inactivate certain single-atom sites.</p>


2019 ◽  
Author(s):  
Shuyuan Zheng ◽  
Taiping Hu ◽  
Xin Bin ◽  
Yunzhong Wang ◽  
Yuanping Yi ◽  
...  

Pure organic room temperature phosphorescence (RTP) and luminescence from nonconventional luminophores have gained increasing attention. However, it remains challenging to achieve efficient RTP from unorthodox luminophores, on account of the unsophisticated understanding of the emission mechanism. Here we propose a strategy to realize efficient RTP in nonconventional luminophores through incorporation of lone pairs together with clustering and effective electronic interactions. The former promotes spin-orbit coupling and boost the consequent intersystem crossing, whereas the latter narrows energy gaps and stabilizes the triplets, thus synergistically affording remarkable RTP. Experimental and theoretical results of urea and its derivatives verify the design rationale. Remarkably, RTP from thiourea solids with unprecedentedly high efficiency of up to 24.5% is obtained. Further control experiments testify the crucial role of through-space delocalization on the emission. These results would spur the future fabrication of nonconventional phosphors, and moreover should advance understanding of the underlying emission mechanism.<br>


2020 ◽  
Vol 13 (8) ◽  
pp. 083005
Author(s):  
Le Duc Anh ◽  
Taiki Hayakawa ◽  
Kohei Okamoto ◽  
Nguyen Thanh Tu ◽  
Masaaki Tanaka

2020 ◽  
Vol 41 (11) ◽  
pp. 1351-1357
Author(s):  
Mei-juan YUANG ◽  
◽  
Jing LI ◽  
Hui-lian QIN ◽  
Ya-ru PENG ◽  
...  

2013 ◽  
Vol 27 (10) ◽  
pp. 1095-1098
Author(s):  
Ya-Jun LU ◽  
Hong-Zhi WANG ◽  
Yao-Gang LI ◽  
Qing-Hong ZHANG

2010 ◽  
Vol 25 (7) ◽  
pp. 711-716 ◽  
Author(s):  
Xue-Tao WANG ◽  
Li-Ping ZHU ◽  
Zhi-Gao YE ◽  
Zhi-Zhen YE ◽  
Bing-Hui ZHAO

Sign in / Sign up

Export Citation Format

Share Document