3D acoustic modelling and waveform inversion in the Laplace domain for an irregular sea floor using the Gaussian quadrature integration method

2012 ◽  
Vol 87 ◽  
pp. 107-117 ◽  
Author(s):  
Byoung Joon Yoon ◽  
Wansoo Ha ◽  
Woohyun Son ◽  
Changsoo Shin ◽  
Henri Calandra
2013 ◽  
Vol 170 (12) ◽  
pp. 2075-2085 ◽  
Author(s):  
Eunjin Park ◽  
Wansoo Ha ◽  
Wookeen Chung ◽  
Changsoo Shin ◽  
Dong-Joo Min

Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. R199-R206 ◽  
Author(s):  
Wansoo Ha ◽  
Changsoo Shin

The lack of the low-frequency information in field data prohibits the time- or frequency-domain waveform inversions from recovering large-scale background velocity models. On the other hand, Laplace-domain waveform inversion is less sensitive to the lack of the low frequencies than conventional inversions. In theory, frequency filtering of the seismic signal in the time domain is equivalent to a constant multiplication of the wavefield in the Laplace domain. Because the constant can be retrieved using the source estimation process, the frequency content of the seismic data does not affect the gradient direction of the Laplace-domain waveform inversion. We obtained inversion results of the frequency-filtered field data acquired in the Gulf of Mexico and two synthetic data sets obtained using a first-derivative Gaussian source wavelet and a single-frequency causal sine function. They demonstrated that Laplace-domain inversion yielded consistent results regardless of the frequency content within the seismic data.


2019 ◽  
Vol 11 (16) ◽  
pp. 1839
Author(s):  
Xu Meng ◽  
Sixin Liu ◽  
Yi Xu ◽  
Lei Fu

Full waveform inversion (FWI) can yield high resolution images and has been applied in Ground Penetrating Radar (GPR) for around 20 years. However, appropriate selection of the initial models is important in FWI because such an inversion is highly nonlinear. The conventional way to obtain the initial models for GPR FWI is ray-based tomogram inversion which suffers from several inherent shortcomings. In this paper, we develop a Laplace domain waveform inversion to obtain initial models for the time domain FWI. The gradient expression of the Laplace domain waveform inversion is deduced via the derivation of a logarithmic object function. Permittivity and conductivity are updated by using the conjugate gradient method. Using synthetic examples, we found that the value of the damping constant in the inversion cannot be too large or too small compared to the dominant frequency of the radar data. The synthetic examples demonstrate that the Laplace domain waveform inversion provide slightly better initial models for the time domain FWI than the ray-based inversion. Finally, we successfully applied the algorithm to one field data set, and the inverted results of the Laplace-based FWI show more details than that of the ray-based FWI.


2011 ◽  
Author(s):  
Henri Calandra ◽  
Christian Rivera ◽  
Changsoo Shin ◽  
Sukjoon Pyun ◽  
Youngseo Kim ◽  
...  

2008 ◽  
Author(s):  
Sukjoon Pyun ◽  
Changsoo Shin ◽  
Hong Lee ◽  
Dongwoo Yang

Sign in / Sign up

Export Citation Format

Share Document