scholarly journals Exact analysis and elastic interaction of multi-soliton for a two-dimensional Gross-Pitaevskii equation in the Bose-Einstein condensation

Author(s):  
Haotian Wang ◽  
Qin Zhou ◽  
Wenjun Liu
1999 ◽  
Vol 13 (05n06) ◽  
pp. 625-631 ◽  
Author(s):  
N. AKHMEDIEV ◽  
M. P. DAS ◽  
A. V. VAGOV

We suggest that crucial effect on Bose-Einstein condensation in systems with attractive potential is three-body interaction. We investigate stationary solutions of the Gross-Pitaevskii equation with negative scattering length and a higher-order stabilising term in presence of an external parabolic potential. Stability properties of the condensate are similar to those for thermodynamic systems in statistical physics which have first order phase transitions. We have shown that there are three possible type of stationary solutions corresponding to stable, metastable and unstable phases. Results are discussed in relation to recently observed 7 Li condensate.


2017 ◽  
Vol 9 (5) ◽  
pp. 96
Author(s):  
M. Serhan

In this work I solve the Gross-Pitaevskii equation describing an atomic gas confined in an isotropic harmonic trap by introducing a variational wavefunction of Gaussian type. The chemical potential of the system is calculated and the solutions are discussed in the weakly and strongly interacting regimes. For the attractive system with negative scattering length the maximum number of atoms that can be put in the condensate without collapse begins is calculated.


2008 ◽  
Vol 17 (10) ◽  
pp. 2150-2154 ◽  
Author(s):  
S. YU. TORILOV ◽  
K. A. GRIDNEV ◽  
W. GREINER

The simple alpha-cluster model was used for the consideration of the chain states and Bose-Einstein condensation in the light self-conjugated nuclei. Obtained results were compared with predictions of the shell-model for the deformed nuclei, with calculations based on Gross-Pitaevskii equation and with recent experimental results.


Sign in / Sign up

Export Citation Format

Share Document