scholarly journals Which electrospray-based ionization method best reflects protein-ligand interactions found in solution? A comparison of ESI, nanoESI, and ESSI for the determination of dissociation constants with mass spectrometry

2008 ◽  
Vol 19 (3) ◽  
pp. 332-343 ◽  
Author(s):  
Matthias Conradin Jecklin ◽  
David Touboul ◽  
Cédric Bovet ◽  
Arno Wortmann ◽  
Renato Zenobi
F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 340
Author(s):  
Daniel D. Clark

Deoxyoligonucleotide binding to bovine pancreatic ribonuclease A (RNase A) was investigated using electrospray ionization ion-trap mass spectrometry (ESI-IT-MS). Deoxyoligonucleotides included CCCCC (dC5) and CCACC (dC2AC2).  This work was an attempt to develop a biochemistry lab experience that would introduce undergraduates to the use of mass spectrometry for the analysis of protein-ligand interactions.  Titration experiments were performed using a fixed RNase A concentration and variable deoxyoligonucleotide concentrations.  Samples at equilibrium were infused directly into the mass spectrometer under native conditions.  For each deoxyoligonucleotide, mass spectra showed one-to-one binding stoichiometry, with marked increases in the total ion abundance of ligand-bound RNase A complexes as a function of concentration, but the accurate determination of dC5 and dC2AC2 dissociation constants was problematic.


2003 ◽  
Vol 31 (5) ◽  
pp. 1006-1009 ◽  
Author(s):  
J. Clarkson ◽  
I.D. Campbell

Solution-state NMR has become an accepted method for studying the structure of small proteins in solution. This has resulted in over 3000 NMR-based co-ordinate sets being deposited in the Protein Databank. It is becoming increasingly apparent, however, that NMR is also a very powerful tool for accessing interactions between macromolecules and various ligands. These interactions can be assessed at a wide variety of levels, e.g. qualitative screening of libraries of pharmaceuticals and ‘chemical shift mapping’. Dissociation constants can sometimes be obtained in such cases. Another example would be the complete three-dimensional structure determination of a protein–ligand complex. Here we briefly describe a few of the principles involved and illustrate the method with recent examples.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 340
Author(s):  
Daniel D. Clark

Deoxyoligonucleotide binding to bovine pancreatic ribonuclease A (RNase A) was investigated using electrospray ionization ion-trap mass spectrometry (ESI-IT-MS). Deoxyoligonucleotides included CCCCC (dC5) and CCACC (dC2AC2).  This work was an attempt to develop a biochemistry lab experience that would introduce undergraduates to the use of mass spectrometry for the analysis of protein-ligand interactions.  Titration experiments were performed using a fixed RNase A concentration and variable deoxyoligonucleotide concentrations.  Samples at equilibrium were infused directly into the mass spectrometer under native conditions.  For each deoxyoligonucleotide, mass spectra showed one-to-one binding stoichiometry, with marked increases in the total ion abundance of ligand-bound RNase A complexes as a function of concentration, but the accurate determination of dC5 and dC2AC2 dissociation constants was problematic.


1990 ◽  
Vol 73 (6) ◽  
pp. 883-886
Author(s):  
Susan S.C Tai ◽  
Nancy Cargile ◽  
Charlie J Barnes ◽  
Philip Kijak

Abstract During an evaluation of the gas chromatography/mass spectrometry (GC/MS) confirmatory procedure of Lynch and Bartoluccl for pyrantel residues in swine tissues, we developed a GC flame Ionization method for quantltatlng pyrantel residues In extracts of swine liver. The method was subjected to trial principally In the laboratories of Biospherics, Inc., using control liver, fortified control liver, and Incurred liver tissue samples. Although the method does not meet all of the current Food and Drug Administration criteria, it compares favorably to the official determinative method. Portions of the same extract can be used for quantitation and for GC/MS confirmation, true recoveries appear to be slightly higher, and an internal standard Is not required. The precision of this method equals or exceeds that of the official determinative method.


Sign in / Sign up

Export Citation Format

Share Document