Small scale structures of NLC observed by lidar at 69°N/69°S and their possible relation to gravity waves

2013 ◽  
Vol 104 ◽  
pp. 244-252 ◽  
Author(s):  
N. Kaifler ◽  
G. Baumgarten ◽  
A.R. Klekociuk ◽  
S.P. Alexander ◽  
J. Fiedler ◽  
...  
2019 ◽  
Author(s):  
Boris Strelnikov ◽  
Martin Eberhart ◽  
Martin Friedrich ◽  
Jonas Hedin ◽  
Mikhail Khaplanov ◽  
...  

Abstract. In this paper we present an overview of measurements conducted during the WADIS-2 rocket campaign. We investigate the effect of small-scale processes like gravity waves and turbulence on the distribution of atomic oxygen and other species in the MLT region. Our analysis suggests that density fluctuations of atomic oxygen are coupled to fluctuations of other constituents, i.e., plasma and neutrals. Our measurements show that all measured quantities, including winds, densities, and temperatures, reveal signatures of both waves and turbulence. We show observations of gravity wave saturation and breakdown together with simultaneous measurements of generated turbulence. Atomic oxygen inside turbulence layers shows two different spectral behaviors, which might imply change of its diffusion properties.


2014 ◽  
Vol 758 ◽  
pp. 287-311 ◽  
Author(s):  
Sebastian Borchert ◽  
Ulrich Achatz ◽  
Mark D. Fruman

AbstractA finite-volume model of the classic differentially heated rotating annulus experiment is used to study the spontaneous emission of gravity waves (GWs) from jet stream imbalances, which may be an important source of these waves in the atmosphere and for which no satisfactory parameterisation exists. Experiments were performed using a classic laboratory configuration as well as using a much wider and shallower annulus with a much larger temperature difference between the inner and outer cylinder walls. The latter configuration is more atmosphere-like, in particular since the Brunt–Väisälä frequency is larger than the inertial frequency, resulting in more realistic GW dispersion properties. In both experiments, the model is initialised with a baroclinically unstable axisymmetric state established using a two-dimensional version of the code, and a low-azimuthal-mode baroclinic wave featuring a meandering jet is allowed to develop. Possible regions of GW activity are identified by the horizontal velocity divergence and a modal decomposition of the small-scale structures of the flow. Results indicate GW activity in both annulus configurations close to the inner cylinder wall and within the baroclinic wave. The former is attributable to boundary layer instabilities, while the latter possibly originates in part from spontaneous GW emission from the baroclinic wave.


2000 ◽  
Vol 179 ◽  
pp. 403-406
Author(s):  
M. Karovska ◽  
B. Wood ◽  
J. Chen ◽  
J. Cook ◽  
R. Howard

AbstractWe applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.


2007 ◽  
Vol 3 (S247) ◽  
pp. 152-157 ◽  
Author(s):  
Oddbjørn Engvold

AbstractSeismology has become a powerful tool in studies of the magnetic structure of solar prominences and filaments. Reversely, analytical and numerical models are guided by available information about the spatial and thermodynamical structure of these enigmatic structures. The present invited paper reviews recent observational results on oscillations and waves as well as details about small-scale structures and dynamics of prominences and filaments.


2009 ◽  
Vol 399 (1) ◽  
pp. 195-208 ◽  
Author(s):  
Jacco Th. van Loon ◽  
Keith T. Smith ◽  
Iain McDonald ◽  
Peter J. Sarre ◽  
Stephen J. Fossey ◽  
...  

1999 ◽  
Vol 17 (3) ◽  
pp. 375 ◽  
Author(s):  
Y. I. Galperin ◽  
J. M. Bosqued ◽  
R. A. Kovrazhkin ◽  
A. G. Yahnin

Sign in / Sign up

Export Citation Format

Share Document