thrust zone
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 52)

H-INDEX

44
(FIVE YEARS 3)

MAUSAM ◽  
2021 ◽  
Vol 44 (1) ◽  
pp. 61-68
Author(s):  
R.S. DATTATRAYAM ◽  
TETSOZO SENO

Slip vectors of thirty-nine thrust events occurring along the Himalayan collision zone have been compared with the velocity vectors between the Indian-Eurasian plates derived from the RM 2 and NUVEL 1 models, The observed deviations of the slip vector from the velocity vector have been interpreted in terms of a simple kinematic model according to which the eastern and western blocks of south Tibet are separating from each other, From the model it is estimated that the western and eastern blocks of Tibet are moving at the rate of 3.6 cm/year westwards at 76°Eand 2.6 cm/year eastwards at 94°E with respect to Eurasia respectively, resulting in an east-west extension, projected to the trend at 85°E, at the rate of 5, 5 cm/year. This would correspond to a strain rate of about 6.9 x 10-8year in central Tibetan region.


2021 ◽  
Vol 944 (1) ◽  
pp. 012045
Author(s):  
N P A R Suhita ◽  
V P Siregar ◽  
J Lumban-Gaol

Abstract Bali is one of the areas vulnerable to disasters because of its geographical position, which is flanked by two earthquake sources in the form of a subduction zone and back-arc thrust zone, which can cause a tsunami in Bali region. This research aims to identify and map the level of coastal vulnerability to the tsunami in Buleleng Regency, Bali Province. The mapping was carried out using Geographic Information System (GIS). This study used secondary data and field data. The parameters used in analyzing the level of tsunami vulnerability were land elevation, slope, landuse, distance from the beach, and distance from the river. The level of vulnerability was grouped into five classes, namely very safe (35,466.9 ha), safe (70,485.0 ha), moderately vulnerable (17,645.0 ha), vulnerable (6,903.3 ha), and very vulnerable (438.9 ha) located in the Districts of Gerokgak, Seririt, Buleleng, and Sawan which are close to the river.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Magali Riesner ◽  
Laurent Bollinger ◽  
Judith Hubbard ◽  
Cyrielle Guérin ◽  
Marthe Lefèvre ◽  
...  

AbstractThe largest (M8+) known earthquakes in the Himalaya have ruptured the upper locked section of the Main Himalayan Thrust zone, offsetting the ground surface along the Main Frontal Thrust at the range front. However, out-of-sequence active structures have received less attention. One of the most impressive examples of such faults is the active fault that generally follows the surface trace of the Main Boundary Thrust (MBT). This fault has generated a clear geomorphological signature of recent deformation in eastern and western Nepal, as well as further west in India. We focus on western Nepal, between the municipalities of Surkhet and Gorahi where this fault is well expressed. Although the fault system as a whole is accommodating contraction, across most of its length, this particular fault appears geomorphologically as a normal fault, indicating crustal extension in the hanging wall of the MHT. We focus this study on the reactivation of the MBT along the Surkhet-Gorahi segment of the surface trace of the newly named Reactivated Boundary Fault, which is ~ 120 km long. We first generate a high-resolution Digital Elevation Model from triplets of high-resolution Pleiades images and use this to map the fault scarp and its geomorphological lateral variation. For most of its length, normal motion slip is observed with a dip varying between 20° and 60° and a maximum cumulative vertical offset of 27 m. We then present evidence for recent normal faulting in a trench located in the village of Sukhetal. Radiocarbon dating of detrital charcoals sampled in the hanging wall of the fault, including the main colluvial wedge and overlying sedimentary layers, suggest that the last event occurred in the early sixteenth century. This period saw the devastating 1505 earthquake, which produced ~ 23 m of slip on the Main Frontal Thrust. Linked or not, the ruptures on the MFT and MBT happened within a short time period compared to the centuries of quiescence of the faults that followed. We suggest that episodic normal-sense activity of the MBT could be related to large earthquakes rupturing the MFT, given its proximity, the sense of motion, and the large distance that separates the MBT from the downdip end of the locked fault zone of the MHT fault system. We discuss these results and their implications for the frontal Himalayan thrust system.


2021 ◽  
Vol 7 (3) ◽  
pp. 414
Author(s):  
Suhayat Minardi ◽  
Ahmad Mudyanto ◽  
Hiden Hiden

Based on the BMKG report on Wednesday, July 29, 2018, at 05.47 WIB, an earthquake with a magnitude of 6.4 SR occurred at the epicenter at a depth of 24 km and was 47 km northeast of the island of Lombok. They are allegedly originating from the Back Arc Thrust Flores, the interaction between the Indo-Australian Plate and the Eurasian plate. This study aims to analyze the subsurface structure of the island of Sumbawa and Flores sea based on the distribution of density values. The analysis was carried out by modeling the subsurface structure based on regional gravity field anomaly data. The data used is secondary data downloaded from the topex.ucsd.edu page 18,400 measuring points. Data processing consists of data correction, separation of anomalies, determination of the Second Vertical Derivative (SVD) value, and 3D and 2D inversion modeling. The data corrections performed are Bouguer correction and terrain correction to produce the total gravity anomaly value. Upward continuation is used to separate regional anomalies and residual anomalies. Analysis of the Second Vertical Derivative (SVD) value was carried out to identify rock contact positions and fault structures. The 3D inversion modeling is done by making a mesh model, and to get a 2D cross-section, six slices are used in the 3D model. The results of the 3D model and 2D cross-section, namely the island of Sumbawa to the Back Arc Thrust zone of Flores, consists of 3 main layers comprised of the upper crust with a density of 2.29 gr/cc - 2.63 gr/cc, the middle crust with a density of 2.64 gr/cc - 2.90 gr/cc, and the lower crust with a density of 2.91 gr/cc - 3.14 gr/cc, and based on the model and SVD value, it shows that the Flores back fault, the reverse fault type, starts at a depth of ± 26 km


2021 ◽  
pp. 1912-1929
Author(s):  
Anhar I. Kamil ◽  
Salam Al-Dulaimi ◽  
Kamal Haji Karim

Calciturbidites are similar to siliciclastic turbidites in structure, texture, basin physiography and processes of deposition; nevertheless, their clasts (grains) are carbonate minerals. Turbidity currents transport carbonate grains from carbonate source areas and coastal areas to the deep basins after passing the shelf (peri-platform). These currents are triggered by short-lived catastrophic events, such as tsunamis, earthquakes, marine slides, and typhoons. The Late Cretaceous Zagros Foreland and Hinterland in NE-Iraq (Kurdistan Region) was an active source for the shedding of voluminous sediments to the deep basin of Zagros Foreland Basin. During late Campanian, Shiranish Formation was deposited in the foreland basin; it occurs in the most famous oil fields in the Middle East and represents hemplagite facies (much diluted turbidite facies). Previous studies have not broached the origins of Shiranish Formation, neither in detail or briefly. Conversely, the present study focused on linking the calciturbidite system to the origin of the deposition of the Shiranish Formation via derivation from main carbonate source areas. Along long distance, the sediments crossed the marginal slope, scoring submarine channels and depositing coarse detrital carbonates before reaching the basin plain. On the plain, mostly the fine fractions have settled down and mixed with pelagic sediment. The calciturbidite evidence could be tracked for more than 40 km in the studied area from the slope and outer shelf (present Thrust Zone) to the basin plain (High Folded zone). In several places, channelized detrital laminated limestones are found inside Shiranish Formation and in the most proximal area near Qaladiza town. Bouma sequences are clearly observable with erosional base and A, B, and C divisions. These calciturbidites are keys for picturing Campanian paleogeography and nature of the source area which was consisted of limestone.


Geosphere ◽  
2021 ◽  
Author(s):  
Robert Fox ◽  
Michael P. Searle

During the Caledonian orogeny, the Moine thrust zone in northwestern Scotland (UK) emplaced Neoproterozoic Moine Supergroup rocks, metamorphosed during the Ordovician (Grampian) and Silurian (Scandian) orogenic periods, westward over the Laurentian passive margin in the northern highlands of Scotland. The Laurentian margin comprises Archean–Paleoproterozoic granulite and amphibolite facies basement (Scourian and Laxfordian complexes, Lewisian gneiss), Proterozoic sedimentary rocks (Stoer and Torridon Groups), and Cambrian–Ordovician passive-margin sediments. Four major thrusts, the Moine, Ben More, Glencoul, and Sole thrusts, are well exposed in the Assynt window. Two highly alkaline syenite intrusions crop out within the Moine thrust zone in the southern Assynt window. The Loch Ailsh and Loch Borralan intrusions range from ultramafic melanite-biotite pyroxenite and pseudoleucite-bearing biotite nepheline syenite (borolanite) to alkali-feldspar–bearing and quartz-bearing syenites. Within the thrust zone, syenites intrude up to the Ordovician Durness Group limestones and dolomites, forming a high-temperature contact metamorphic aureole with diopside-forsterite-phlogopite-brucite marbles exposed at Ledbeg quarry. Controversy remains as to whether the Loch Ailsh and Loch Borralan syenites were intruded prior to thrusting or intruded syn- or post-thrusting. Borolanites contain large white leucite crystals pseudomorphed by alkali feldspar, muscovite, and nepheline (pseudoleucite) that have been flattened and elongated during ductile shearing. The minerals pseudomorphing leucites show signs of ductile deformation indicating that high-temperature (~500 °C) deformation acted upon pseudomorphed leucite crystals that had previously undergone subsolidus breakdown. New detailed field mapping and structural and petrological observations are used to constrain the geological evolution of both the Loch Ailsh and the Loch Borralan intrusions and the chronology of the Moine thrust zone. The data supports the interpretation that both syenite bodies were intruded immediately prior to thrusting along the Moine, Ben More, and Borralan thrusts.


2021 ◽  
pp. jgs2020-235
Author(s):  
Chiara Montemagni ◽  
Igor M. Villa

Dating structurally complex fault rocks often results in internally inconsistent ages, as several mineral generations are intergrown at scales << 10 µm and almost always altered to various degrees. Firstly, electron probe microanalysis is necessary to assess both inventory and spatial distribution of minerals and their retrogression/alteration phases. We then used 40Ar/39Ar stepheating combining two independent indicators that allow the discrimination of coexisting mica generations from each other: (i) mica stoichiometry, which is proxied by 39Ar concentration in combination with 37Ar/39Ar and 38Ar/39Ar (Ca/K and Cl/K) ratios; (ii) furnace temperature, at which the degassing peak accompanying dehydration and structural collapse is observed. As dehydration rates depend on average bond strength in the crystal structure, it is predicted and observed that the temperature of the differential Ar release peak is variable among different minerals. We observe that the Ca/Cl/K signatures of pure micas coincide with the Ar release peak. The Main Central Thrust zone in the Garhwal Himalaya records a protracted history. Foliation of Vaikrita Thrust formed at 15-8 Ma, followed by static decompression at 7 Ma; foliation of structurally lower Munsiari Thrust formed around 5 Ma. Our elaborate and time-consuming petrochronological procedure should become routine whenever analysing polydeformed metamorphic rocks.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5357212Thematic collection: This article is part of the Isotopic Dating collection available at: https://www.lyellcollection.org/cc/isotopic-dating-of-deformation


2021 ◽  
Vol 51 (1) ◽  
pp. 83-108
Author(s):  
Yemisi C. AJISAFE

3D post-stack time migrated seismic data and a suite of composite well log data from six wells drilled within the “AFUN” field Niger delta were used to effect a detailed interpretation of the field. This was with a view to delineating architectural elements that control reservoir quality of a deepwater turbidite reservoir. The data analyses were done using the Petrel software. LAS file of logs were imported into the Petrel software as well as SEG.Y. seismic data. Fault interpretation and horizon mapping were based on the well-seismic tie from the generated seismogram. Time and depth structure maps were created. Thirty faults which include growth faults, reverse faults, collapsed crest structure and as well as faults that are synthetic and antithetic to the growth faults were mapped. The growth faults are believed to act as pathways for the updip movement of hydrocarbon from the Akata Formation to Agbada Formation. The structural interpretation showed that the area has been subjected to compressional deformation which resulted in reverse faulting system in toe thrust zone influenced by shale diapirs. The maps revealed contour closures that belong to an anticlinal structure which is forming traps in the reservoirs. The structures are faulted North-South trending rollover anticlines. It has also been shown that the distribution and type of architectural elements i.e. fractures within the fan system have major impact upon the reservoir distribution, continuity and connectivity of sand/shale bodies. The study concluded that structural style and facies architecture are the two fundamental elements that defined the reservoir heterogeneity of the “AFUN” Field.


Sign in / Sign up

Export Citation Format

Share Document