scholarly journals De-novo FAIRification via an Electronic Data Capture system by automated transformation of filled electronic Case Report Forms into machine-readable data

2021 ◽  
Vol 122 ◽  
pp. 103897
Author(s):  
Martijn G. Kersloot ◽  
Annika Jacobsen ◽  
Karlijn H.J. Groenen ◽  
Bruna dos Santos Vieira ◽  
Rajaram Kaliyaperumal ◽  
...  
2021 ◽  
Author(s):  
Martijn G. Kersloot ◽  
Annika Jacobsen ◽  
Karlijn H.J. Groenen ◽  
Bruna dos Santos Vieira ◽  
Rajaram Kaliyaperumal ◽  
...  

Introduction Existing methods to make data Findable, Accessible, Interoperable, and Reusable (FAIR) are usually carried out in a post-hoc manner: after the research project is conducted and data are collected. De-novo FAIRification, on the other hand, incorporates the FAIRification steps in the process of a research project. In medical research, data is often collected and stored via electronic Case Report Forms (eCRFs) in Electronic Data Capture (EDC) systems. By implementing a de-novo FAIRification process in such a system, the reusability and, thus, scalability of FAIRification across research projects can be greatly improved. In this study, we developed and implemented a novel method for de-novo FAIRification via an EDC system. We evaluated our method by applying it to the Registry of Vascular Anomalies (VASCA). Methods Our EDC and research project independent method ensures that eCRF data entered into an EDC system can be transformed into machine-readable, FAIR data using a semantic data model (a canonical representation of the data, based on ontology concepts and semantic web standards) and mappings from the model to questions on the eCRF. The FAIRified data are stored in a triple store and can, together with associated metadata, be accessed and queried through a FAIR Data Point. The method was implemented in Castor EDC, an EDC system, through a data transformation application. The FAIRness of the output of the method, the FAIRified data and metadata, was evaluated using the FAIR Evaluation Services. Results We successfully applied our FAIRification method to the VASCA registry. Data entered on eCRFs is automatically transformed into machine-readable data and can be accessed and queried using SPARQL queries in the FAIR Data Point. Twenty-one FAIR Evaluator tests pass and one test regarding the metadata persistence policy fails, since this policy is not in place yet. Conclusion In this study, we developed a novel method for de-novo FAIRification via an EDC system. Its application in the VASCA registry and the automated FAIR evaluation show that the method can be used to make clinical research data FAIR when they are entered in an eCRF without any intervention from data management and data entry personnel. Due to the generic approach and developed tooling, we believe that our method can be used in other registries and clinical trials as well.


2016 ◽  
Vol 34 (Supplement 1) ◽  
pp. e247
Author(s):  
Jing Zhang ◽  
Lei Sun ◽  
Yu Liu ◽  
Hongyi Wang ◽  
Ningling Sun ◽  
...  

2016 ◽  
Vol 3 (3) ◽  
pp. 236-241 ◽  
Author(s):  
Cameron B. Alavi ◽  
John D. Massman

2007 ◽  
Vol 23 (8) ◽  
pp. 1967-1979 ◽  
Author(s):  
Joseph Huffstutter ◽  
W. David Craig ◽  
Gregory Schimizzi ◽  
John Harshbarger ◽  
Jeffrey Lisse ◽  
...  

Author(s):  
Akiyoshi KAWAI ◽  
Tomoaki KUWANO ◽  
Hisao NAKAJIMA ◽  
Kiyofumi MIZUNO ◽  
Hiroyuki NISHIMOTO ◽  
...  

2021 ◽  
Vol 15 (8) ◽  
pp. e0009675
Author(s):  
Saugat Karki ◽  
Adam Weiss ◽  
Jina Dcruz ◽  
Dorothy Hunt ◽  
Brandon Haigood ◽  
...  

Background In the absence of a vaccine or pharmacological treatment, prevention and control of Guinea worm disease is dependent on timely identification and containment of cases to interrupt transmission. The Chad Guinea Worm Eradication Program (CGWEP) surveillance system detects and monitors Guinea worm disease in both humans and animals. Although Guinea worm cases in humans has declined, the discovery of canine infections in dogs in Chad has posed a significant challenge to eradication efforts. A foundational information system that supports the surveillance activities with modern data management practices is needed to support continued program efficacy. Methods We sought to assess the current CGWEP surveillance and information system to identify gaps and redundancies and propose system improvements. We reviewed documentation, consulted with subject matter experts and stakeholders, inventoried datasets to map data elements and information flow, and mapped data management processes. We used the Information Value Cycle (IVC) and Data-Information System-Context (DISC) frameworks to help understand the information generated and identify gaps. Results Findings from this study identified areas for improvement, including the need for consolidation of forms that capture the same demographic variables, which could be accomplished with an electronic data capture system. Further, the mental models (conceptual frameworks) IVC and DISC highlighted the need for more detailed, standardized workflows specifically related to information management. Conclusions Based on these findings, we proposed a four-phased roadmap for centralizing data systems and transitioning to an electronic data capture system. These included: development of a data governance plan, transition to electronic data entry and centralized data storage, transition to a relational database, and cloud-based integration. The method and outcome of this assessment could be used by other neglected tropical disease programs looking to transition to modern electronic data capture systems.


2016 ◽  
Vol 13 (4) ◽  
pp. 401-407 ◽  
Author(s):  
Hubert Y. Pan ◽  
Simona F. Shaitelman ◽  
George H. Perkins ◽  
Pamela J. Schlembach ◽  
Wendy A. Woodward ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document