Lumbar spine angles and intervertebral disc characteristics with end-range positions in three planes of motion in healthy people using upright MRI

2019 ◽  
Vol 89 ◽  
pp. 95-104
Author(s):  
David B. Berry ◽  
Alejandra Hernandez ◽  
Keenan Onodera ◽  
Noah Ingram ◽  
Samuel R. Ward ◽  
...  
2021 ◽  
pp. 219256822199668
Author(s):  
Yusuke Murakami ◽  
Tadao Morino ◽  
Masayuki Hino ◽  
Hiroshi Misaki ◽  
Hiroshi Imai ◽  
...  

Study Design: Retrospective observational study. Objective: To investigate the relationship between the extent of ligament ossification and the range of motion (ROM) of the lumbar spine and develop a new scoring system. Methods: Forty-three patients (30 men and 13 women) with lumbar spinal canal stenosis who underwent decompression from January to December 2018. Ligament ossification at L1/2 to L5/S was assessed on plain X-ray (Xp) and computed tomography (CT) using a modified Mata scoring system (0 point: no ossification, 1 point: ossification of less than half of the intervertebral disc height, 2 points: ossification of half or more of the intervertebral disc height, 3 points: complete bridging), and the intra-rater and inter-rater reliability of the scoring was assessed. The relationship of the scores with postoperative lumbar ROM was investigated. Result: Intra-rater reliability was high (Cronbach’s α was 0.74 for L5/S on Xp but 0.8 or above for other sections), as was inter-rater reliability (Cronbach’s α was 0.8 or above for all the segments). ROM significantly decreased as the score increased (scores 1 to 2, and 2 to 3). A significant moderate negative correlation was found between the sum of the scores at L1/2-L5/S and the ROM at L1-S (ρ = − 0.4493, P = 0.025). Conclusion: Our scoring system reflects lumbar mobility and is reproducible. It is effective for assessing DISH in fractures and spinal conditions, and monitoring effects on treatment outcomes and changes over time.


Spine ◽  
2001 ◽  
Vol 26 (19) ◽  
pp. 2112-2118 ◽  
Author(s):  
Kazuhiro Chiba ◽  
Yoshiaki Toyama ◽  
Morio Matsumoto ◽  
Hirofumi Maruiwa ◽  
Masahiko Watanabe ◽  
...  

Author(s):  
Kristen E. Lipscomb ◽  
Nesrin Sarigul-Klijn

Back pain is a debilitating medical condition, often with an unclear source. Over time, back pain can affect the work and lifestyle of an individual by reducing job productivity and time spent on enjoyable activities. Discography of the intervertebral disc (IVD) is often used to diagnose pathology of the disc and determine if it may be a source for chronic back pain. It has recently been suggested that discography may lead to IVD degeneration, and has been a cause of controversy among spine care physicians. Using the results from a cadaveric experimental model, a finite element model was first validated. Then, a study was conducted to better understand the changes caused by discography on human spine mechanics. An anatomically accurate L3-L5 lumbar spine model was developed using computed tomography scans. Discography was simulated in the model as an area in the disc affected by needle puncture. The material properties in the nucleus pulposus were adjusted to match experimental data both before and after puncture. The results show that puncture of the IVD leads to increased deformation as well as increased stresses in the disc. Pressure in the nucleus pulposus found to decrease after puncture, and was calculated in the course of this study. Puncturing the IVD changes disc mechanics and may lead to progressive spine issues in the future such as disc degeneration. While discography has been the gold standard to determine if the disc was a source of back pain in patients for many years, the potential long-term degenerative effects of the procedure are only now coming into light, and must be closely examined.


2005 ◽  
Vol 15 (6) ◽  
pp. 720-730 ◽  
Author(s):  
Hans-Joachim Wilke ◽  
Friederike Rohlmann ◽  
Cornelia Neidlinger-Wilke ◽  
Karin Werner ◽  
Lutz Claes ◽  
...  

2020 ◽  
Author(s):  
Christoph von Schulze Pellengahr ◽  
Wolfram Teske ◽  
Saurabh Kapoor ◽  
Alexander Klein ◽  
Bernd Wegener ◽  
...  

Abstract Background: High primary stability is the fundamental prerequisite for safe osseointegration of cementless intervertebral disc prosthesis. The aim of our study was to determine the primary stability of intervertebral disc prosthesis with two different anchoring concepts – keel and spike anchoring. Methods: 10 human cadaveric lumbar spine specimens with an ActivL intervertebral disc prosthesis (5 x keel anchoring, 5 x spike anchoring) were tested on a spine simulator. Under axial load, moments of flexion, extension, left and right bending and axial rotation were applied on the lumbar spine specimens through a defined three-dimensional movement program as per ISO 2631 and ISO/CD 18192-1.3 standards. Micro-motion of the implant was measured in every axis for both anchor types and compared using statistical test for significance after calculating 95% confidence intervals. Results: In the transverse axis, the keel anchoring concept showed lower mean values of micro-motion , which was statistically significant (p<0.05) compared to spike anchoring concept. In the sagittal axis, the results were again in favour of the keel anchoring, but did not reach statistical significance (p>0.05). The highest micro-motion values were observed in the longitudinal axis. Both concepts showed values around the threshold of primary stability (150 μm) with the spike concept showing lower mean values, but without a statistically significant difference.Conclusions: Both types of anchors met the criteria of primary stability. The keel anchoring shows a slight advantage compared to anchoring with spikes. Direct postoperative active mobilization doesn’t seem to compromise the primary stability of the prosthesis.


Sign in / Sign up

Export Citation Format

Share Document