Novel neuromuscular junction model in 2D and 3D myotubes co-cultured with induced pluripotent stem cell-derived motor neurons

2020 ◽  
Vol 129 (4) ◽  
pp. 486-493 ◽  
Author(s):  
Kantaro Yoshioka ◽  
Akira Ito ◽  
Yoshinori Kawabe ◽  
Masamichi Kamihira
2019 ◽  
Author(s):  
Arens Taga ◽  
Raha Dastgheyb ◽  
Christa Habela ◽  
Jessica Joseph ◽  
Jean-Philippe Richard ◽  
...  

AbstractThe ability to generate human induced pluripotent stem cell (hiPSC)-derived neural cells displaying region-specific phenotypes is of particular interest for modeling central nervous system (CNS) biology in vitro. We describe a unique method by which spinal cord hiPSC-derived astrocytes (hiPSC-A) are cultured with spinal cord hiPSC-derived motor neurons (hiPSC-MN) in a multielectrode array (MEA) system to record electrophysiological activity over time. We show that hiPSC-A enhance hiPSC-MN electrophysiological maturation in a time-dependent fashion. The sequence of plating, density, and age in which hiPSC-As are co-cultured with MN, but not their respective hiPSC line origin, are factors that influence neuronal electrophysiology. When compared to co-culture with mouse primary spinal cord astrocytes, we observe an earlier and more robust electrophysiological maturation in the fully human cultures, suggesting that the human origin is relevant to the recapitulation of astrocyte/motor neuron cross-talk. Finally, we test pharmacological compounds on our MEA platform and observe changes in electrophysiological activity which confirm hiPSC-MN maturation. These findings are supported by immunocytochemistry and real time PCR studies in parallel cultures demonstrating human astrocyte mediated changes in the structural maturation and protein expression profiles of the neurons. Interestingly, this relationship is reciprocal and co-culture with neurons influences astrocyte maturation as well. Taken together these data indicate that in a human in vitro spinal cord culture system, astrocytes alter hiPSC-MN maturation in a time-dependent and species specific manner and suggest a closer approximation of in vivo conditions.Main PointsWe developed a method for the co-culture of human iPSC-A/MN for multielectrode array recordings.The morphological, molecular, pharmacological, and electrophysiological characterization of the co-cultures suggests bidirectional maturation.


2020 ◽  
Vol 29 (13) ◽  
pp. 2200-2217 ◽  
Author(s):  
Nidaa A Ababneh ◽  
Jakub Scaber ◽  
Rowan Flynn ◽  
Andrew Douglas ◽  
Paola Barbagallo ◽  
...  

Abstract The G4C2 hexanucleotide repeat expansion (HRE) in C9orf72 is the commonest cause of familial amyotrophic lateral sclerosis (ALS). A number of different methods have been used to generate isogenic control lines using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and non-homologous end-joining by deleting the repeat region, with the risk of creating indels and genomic instability. In this study, we demonstrate complete correction of an induced pluripotent stem cell (iPSC) line derived from a C9orf72-HRE positive ALS/frontotemporal dementia patient using CRISPR/Cas9 genome editing and homology-directed repair (HDR), resulting in replacement of the excised region with a donor template carrying the wild-type repeat size to maintain the genetic architecture of the locus. The isogenic correction of the C9orf72 HRE restored normal gene expression and methylation at the C9orf72 locus, reduced intron retention in the edited lines and abolished pathological phenotypes associated with the C9orf72 HRE expansion in iPSC-derived motor neurons (iPSMNs). RNA sequencing of the mutant line identified 2220 differentially expressed genes compared with its isogenic control. Enrichment analysis demonstrated an over-representation of ALS relevant pathways, including calcium ion dependent exocytosis, synaptic transport and the Kyoto Encyclopedia of Genes and Genomes ALS pathway, as well as new targets of potential relevance to ALS pathophysiology. Complete correction of the C9orf72 HRE in iPSMNs by CRISPR/Cas9-mediated HDR provides an ideal model to study the earliest effects of the hexanucleotide expansion on cellular homeostasis and the key pathways implicated in ALS pathophysiology.


Author(s):  
Alec S. T. Smith ◽  
Changho Chun ◽  
Jennifer Hesson ◽  
Julie Mathieu ◽  
Paul N. Valdmanis ◽  
...  

Gene editing technologies hold great potential to enhance our ability to model inheritable neurodegenerative diseases. Specifically, engineering multiple amyotrophic lateral sclerosis (ALS) mutations into isogenic cell populations facilitates determination of whether different causal mutations cause pathology via shared mechanisms, and provides the capacity to separate these mechanisms from genotype-specific effects. As gene-edited, cell-based models of human disease become more commonplace, there is an urgent need to verify that these models constitute consistent and accurate representations of native biology. Here, commercially sourced, induced pluripotent stem cell-derived motor neurons from Cellular Dynamics International, edited to express the ALS-relevant mutations TDP-43M337V and TDP-43Q331K were compared with in-house derived lines engineered to express the TDP-43Q331K mutation within the WTC11 background. Our results highlight electrophysiological and mitochondrial deficits in these edited cells that correlate with patient-derived cells, suggesting a consistent cellular phenotype arising from TDP-43 mutation. However, significant differences in the transcriptomic profiles and splicing behavior of the edited cells underscores the need for careful comparison of multiple lines when attempting to use these cells as a means to better understand the onset and progression of ALS in humans.


Author(s):  
Nidaa Ababneh ◽  
Jakub Scaber ◽  
Rowan Flynn ◽  
Andrew Douglas ◽  
Martin R. Turner ◽  
...  

AbstractThe G4C2 hexanucleotide repeat expansion (HRE) in C9orf72 is the commonest cause of familial amyotrophic lateral sclerosis (ALS). A number of different methods have been used to generate isogenic control lines using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 and non-homologous end-joining (NHEJ) by deleting the repeat region with the risk of creating indels and genomic instability. In this study we demonstrate complete correction of an induced pluripotent stem cell (iPSC) line derived from a C9orf72-HRE positive ALS/FTD patient using CRISPR/Cas9 genome editing and homology directed repair (HDR), resulting in replacement of the excised region with a donor template carrying the wild-type repeat size to maintain the genetic architecture of the locus. The isogenic correction of the C9orf72 HRE restored normal expression and methylation at the C9orf72 locus, reduced intron retention in the edited lines, and abolished pathological phenotypes associated with the C9orf72 HRE expansion in iPSC derived motor neurons (iPSMNs).RNA sequencing of the mutant line identified 2220 differentially expressed genes compared to its isogenic control. Enrichment analysis demonstrated an over-representation of ALS relevant pathways, including calcium ion dependent exocytosis, synaptic transport and the KEGG ALS pathway, as well as new targets of potential relevance to ALS pathophysiology.Complete correction of the C9orf72 HRE in iPSMNs by CRISPR/Cas9 mediated HDR provides an ideal model to study the earliest effects of the hexanucleotide expansion on cellular homeostasis and the key pathways implicated in ALS pathophysiology.


Sign in / Sign up

Export Citation Format

Share Document