Extended supercomplex contains type-II NADH dehydrogenase, cytochrome bcc complex, and aa3 oxidase in the respiratory chain of Corynebacterium glutamicum

Author(s):  
Hiroko Takazaki ◽  
Tomoichirou Kusumoto ◽  
Wataru Ishibashi ◽  
Takuo Yasunaga ◽  
Junshi Sakamoto
2021 ◽  
Author(s):  
Hannes Juergens ◽  
Álvaro Mielgo-Gómez ◽  
Albert Godoy-Hernández ◽  
Jolanda ter Horst ◽  
Janine M. Nijenhuis ◽  
...  

AbstractMitochondria from Ogataea parapolymorpha harbor a branched electron-transport chain containing a proton-pumping Complex I NADH dehydrogenase and three alternative (type II) NADH dehydrogenases (NDH2s). To investigate the physiological role, localization and substrate specificity of these enzymes, growth of various NADH dehydrogenase mutants was quantitatively characterized in shake-flask and chemostat cultures, followed by oxygen-uptake experiments with isolated mitochondria. Furthermore, NAD(P)H:quinone oxidoreduction of the three NDH2s were individually assessed. Our findings show that the O. parapolymorpha respiratory chain contains an internal NADH-accepting NDH2 (Ndh2-1/OpNdi1), at least one external NAD(P)H-accepting enzyme and likely additional mechanisms for respiration-linked oxidation of cytosolic NADH. Metabolic regulation appears to prevent competition between OpNdi1 and Complex I for mitochondrial NADH. With the exception of OpNdi1, the respiratory chain of O. parapolymorpha exhibits metabolic redundancy and tolerates deletion of multiple NADH-dehydrogenase genes without compromising fully respiratory metabolism.ImportanceTo achieve high productivity and yields in microbial bioprocesses, efficient use of the energy substrate is essential. Organisms with branched respiratory chains can respire via the energy-efficient proton-pumping Complex I, or make use of alternative NADH dehydrogenases (NDH2s). The yeast Ogataea parapolymorpha contains three uncharacterized, putative NDH2s which were investigated in this work. We show that O. parapolymorpha contains at least one ‘internal’ NDH2, which provides an alternative to Complex I for mitochondrial NADH oxidation, albeit at a lower efficiency. The use of this NDH2 appeared to be limited to carbon excess conditions and the O. parapolymorpha respiratory chain tolerated multiple deletions without compromising respiratory metabolism, highlighting opportunities for metabolic (redox) engineering. By providing a more comprehensive understanding of the physiological role of NDH2s, including insights into their metabolic capacity, orientation and substrate specificity this study also extends our fundamental understanding of respiration in organisms with branched respiratory chains.


2009 ◽  
Vol 19 (3) ◽  
pp. 972-975 ◽  
Author(s):  
Carolyn K. Dong ◽  
Vishal Patel ◽  
Jimmy C. Yang ◽  
Jeffrey D. Dvorin ◽  
Manoj T. Duraisingh ◽  
...  

2003 ◽  
Vol 1557 ◽  
pp. 13-19 ◽  
Author(s):  
Tiago M Bandeiras ◽  
Carlos A Salgueiro ◽  
Harald Huber ◽  
Cláudio M Gomes ◽  
Miguel Teixeira

2021 ◽  
Vol 118 (42) ◽  
pp. e2103803118
Author(s):  
Margarida Duarte ◽  
Cleide Ferreira ◽  
Gurleen Kaur Khandpur ◽  
Tamara Flohr ◽  
Jannik Zimmermann ◽  
...  

Type II NADH dehydrogenases (NDH2) are monotopic enzymes present in the external or internal face of the mitochondrial inner membrane that contribute to NADH/NAD+ balance by conveying electrons from NADH to ubiquinone without coupled proton translocation. Herein, we characterize the product of a gene present in all species of the human protozoan parasite Leishmania as a bona fide, matrix-oriented, type II NADH dehydrogenase. Within mitochondria, this respiratory activity concurs with that of type I NADH dehydrogenase (complex I) in some Leishmania species but not others. To query the significance of NDH2 in parasite physiology, we attempted its genetic disruption in two parasite species, exhibiting a silent (Leishmania infantum, Li) and a fully operational (Leishmania major, Lm) complex I. Strikingly, this analysis revealed that NDH2 abrogation is not tolerated by Leishmania, not even by complex I–expressing Lm species. Conversely, complex I is dispensable in both species, provided that NDH2 is sufficiently expressed. That a type II dehydrogenase is essential even in the presence of an active complex I places Leishmania NADH metabolism into an entirely unique perspective and suggests unexplored functions for NDH2 that span beyond its complex I–overlapping activities. Notably, by showing that the essential character of NDH2 extends to the disease-causing stage of Leishmania, we genetically validate NDH2—an enzyme without a counterpart in mammals—as a candidate target for leishmanicidal drugs.


PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0214023 ◽  
Author(s):  
Hangjun Ke ◽  
Suresh M. Ganesan ◽  
Swati Dass ◽  
Joanne M. Morrisey ◽  
Sovitj Pou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document