Natural Variability in Catenaria anguillulae Sorokin

2010 ◽  
Vol 150 ◽  
pp. 475-475
Author(s):  
S.S. Vaish ◽  
R.C. Gupta ◽  
K.P. Singh
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pamela A. Fernández ◽  
Jorge M. Navarro ◽  
Carolina Camus ◽  
Rodrigo Torres ◽  
Alejandro H. Buschmann

AbstractThe capacity of marine organisms to adapt and/or acclimate to climate change might differ among distinct populations, depending on their local environmental history and phenotypic plasticity. Kelp forests create some of the most productive habitats in the world, but globally, many populations have been negatively impacted by multiple anthropogenic stressors. Here, we compare the physiological and molecular responses to ocean acidification (OA) and warming (OW) of two populations of the giant kelp Macrocystis pyrifera from distinct upwelling conditions (weak vs strong). Using laboratory mesocosm experiments, we found that juvenile Macrocystis sporophyte responses to OW and OA did not differ among populations: elevated temperature reduced growth while OA had no effect on growth and photosynthesis. However, we observed higher growth rates and NO3− assimilation, and enhanced expression of metabolic-genes involved in the NO3− and CO2 assimilation in individuals from the strong upwelling site. Our results suggest that despite no inter-population differences in response to OA and OW, intrinsic differences among populations might be related to their natural variability in CO2, NO3− and seawater temperatures driven by coastal upwelling. Further work including additional populations and fluctuating climate change conditions rather than static values are needed to precisely determine how natural variability in environmental conditions might influence a species’ response to climate change.


2021 ◽  
Author(s):  
Kevin Horsburgh ◽  
Ivan D. Haigh ◽  
Jane Williams ◽  
Michela De Dominicis ◽  
Judith Wolf ◽  
...  

AbstractIn this paper, we show that over the next few decades, the natural variability of mid-latitude storm systems is likely to be a more important driver of coastal extreme sea levels than either mean sea level rise or climatically induced changes to storminess. Due to their episodic nature, the variability of local sea level response, and our short observational record, understanding the natural variability of storm surges is at least as important as understanding projected long-term mean sea level changes due to global warming. Using the December 2013 North Atlantic Storm Xaver as a baseline, we used a meteorological forecast modification tool to create “grey swan” events, whilst maintaining key physical properties of the storm system. Here we define “grey swan” to mean an event which is expected on the grounds of natural variability but is not within the observational record. For each of these synthesised storm events, we simulated storm tides and waves in the North Sea using hydrodynamic models that are routinely used in operational forecasting systems. The grey swan storms produced storm surges that were consistently higher than those experienced during the December 2013 event at all analysed tide gauge locations along the UK east coast. The additional storm surge elevations obtained in our simulations are comparable to high-end projected mean sea level rises for the year 2100 for the European coastline. Our results indicate strongly that mid-latitude storms, capable of generating more extreme storm surges and waves than ever observed, are likely due to natural variability. We confirmed previous observations that more extreme storm surges in semi-enclosed basins can be caused by slowing down the speed of movement of the storm, and we provide a novel explanation in terms of slower storm propagation allowing the dynamical response to approach equilibrium. We did not find any significant changes to maximum wave heights at the coast, with changes largely confined to deeper water. Many other regions of the world experience storm surges driven by mid-latitude weather systems. Our approach could therefore be adopted more widely to identify physically plausible, low probability, potentially catastrophic coastal flood events and to assist with major incident planning.


2013 ◽  
Vol 3 (1) ◽  
pp. 170-181 ◽  
Author(s):  
Inés Ibáñez ◽  
Elise S. Gornish ◽  
Lauren Buckley ◽  
Diane M. Debinski ◽  
Jessica Hellmann ◽  
...  

Nature ◽  
1990 ◽  
Vol 344 (6264) ◽  
pp. 324-327 ◽  
Author(s):  
T. M. L. Wigley ◽  
S. C. B. Raper

2007 ◽  
Vol 23 (4) ◽  
pp. 558-563 ◽  
Author(s):  
Francesca Razzolini ◽  
Ilaria Vicenti ◽  
Francesco Saladini ◽  
Valeria Micheli ◽  
Laura Romano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document