Shark Attack: High affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation

2014 ◽  
Vol 191 ◽  
pp. 236-245 ◽  
Author(s):  
Stefan Zielonka ◽  
Niklas Weber ◽  
Stefan Becker ◽  
Achim Doerner ◽  
Andreas Christmann ◽  
...  
1992 ◽  
Vol 12 (8) ◽  
pp. 3415-3424 ◽  
Author(s):  
W M Kavanaugh ◽  
A Klippel ◽  
J A Escobedo ◽  
L T Williams

The activated platelet-derived growth factor (PDGF) receptor physically associates with p85, a subunit of phosphatidylinositol-3 kinase. Although this interaction may activate phosphatidylinositol-kinase and is crucial for PDGF-induced mitogenesis, it has not been shown whether p85 is modified in the process. p85 contains two SH2 (Src homology) domains, designated SH2-N and SH2-C. Recent experiments have shown that the SH2-C domain alone determines high-affinity binding of p85 to the PDGF receptor. The function of SH2-N, which binds receptors with lower affinity, is unknown. In this study, using a receptor-blotting technique, we find that p85 is modified by PDGF stimulation of intact cells. This modification involves inhibition of binding of the SH2-N region of p85 to the PDGF receptor. Studies with vanadate suggest that tyrosine phosphorylation of p85 is responsible for the modification of p85 detected by receptor blotting. Furthermore, recombinant p85 is modified in a similar manner when it is tyrosine phosphorylated in vitro by PDGF receptors. Tyrosine phosphorylation of p85 does not block binding of the SH2-C domain and therefore does not release p85 from high-affinity binding sites on the receptor in vitro. Instead, phosphorylation may regulate the ability of the SH2-N of p85 to bind to a different portion of the PDGF receptor or to another molecule in the signaling complex. This study provides the first evidence that p85 is tyrosine phosphorylated upon PDGF stimulation of cells and suggests that tyrosine phosphorylation of p85 regulates its activity or its interaction with other proteins.


2000 ◽  
Vol 20 (18) ◽  
pp. 6958-6969 ◽  
Author(s):  
Mitchell E. Garber ◽  
Timothy P. Mayall ◽  
Eric M. Suess ◽  
Jill Meisenhelder ◽  
Nancy E. Thompson ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) Tat interacts with cyclin T1 (CycT1), a regulatory partner of CDK9 in the positive transcription elongation factor (P-TEFb) complex, and binds cooperatively with CycT1 to TAR RNA to recruit P-TEFb and promote transcription elongation. We show here that Tat also stimulates phosphorylation of affinity-purified core RNA polymerase II and glutathioneS-transferase–C-terminal-domain substrates by CycT1-CDK9, but not CycH-CDK7, in vitro. Interestingly, incubation of recombinant Tat–P-TEFb complexes with ATP enhanced binding to TAR RNA dramatically, and the C-terminal half of CycT1 masked binding of Tat to TAR RNA in the absence of ATP. ATP incubation lead to autophosphorylation of CDK9 at multiple C-terminal Ser and Thr residues, and full-length CycT1 (amino acids 728) [CycT1(1–728)], but not truncated CycT1(1–303), was also phosphorylated by CDK9. P-TEFb complexes containing a catalytically inactive CDK9 mutant (D167N) bound TAR RNA weakly and independently of ATP, as did a C-terminal truncated CDK9 mutant that was catalytically active but unable to undergo autophosphorylation. Analysis of different Tat proteins revealed that the 101-amino-acid SF2 HIV-1 Tat was unable to bind TAR with CycT1(1–303) in the absence of phosphorylated CDK9, whereas unphosphorylated CDK9 strongly blocked binding of HIV-2 Tat to TAR RNA in a manner that was reversed upon autophosphorylation. Replacement of CDK9 phosphorylation sites with negatively charged residues restored binding of CycT1(1–303)-D167N-Tat, and rendered D167N a more potent inhibitor of transcription in vitro. Taken together, these results demonstrate that CDK9 phosphorylation is required for high-affinity binding of Tat–P-TEFb to TAR RNA and that the state of P-TEFb phosphorylation may regulate Tat transactivation in vivo.


Virology ◽  
1981 ◽  
Vol 114 (2) ◽  
pp. 585-588 ◽  
Author(s):  
Michel Aguet ◽  
Ion Gresser ◽  
Ara G. Hovanessian ◽  
Marie-Thérèse Bandu ◽  
Brigitte Blanchard ◽  
...  

Metallomics ◽  
2021 ◽  
Author(s):  
Afsana Mahim ◽  
Mohammad Mahim ◽  
David H Petering

Abstract The cellular trafficking pathways that conduct zinc to its sites of binding in functional proteins remain largely unspecified. In this study, the hypothesis was investigated that non-specific proteomic binding sites serve as intermediates in zinc trafficking. Proteome from pig kidney LLC-PK1 cells contains a large concentration of such sites, displaying an average conditional stability constant of 1010-11, that are dependent on sulfhydryl ligands to achieve high affinity binding of zinc. As a result, the proteome competes effectively with induced metallothionein for Zn2+ upon exposure of cells to extracellular Zn2+ or during in vitro direct competition. The reaction of added Zn2+ bound to proteome with apo-carbonic anhydrase was examined as a potential model for intracellular zinc trafficking. The extent of this reaction was inversely dependent upon proteome concentration and under cellular conditions thought to be negligible. The rate of reaction was strictly first order in both Zn2+ and apo-carbonic anhydrase and also considered to be insignificant in cells. Adding the low molecular weight fraction of cell supernatant to the proteome markedly enhanced the speed of this reaction, a phenomenon dependent on the presence of glutathione. In agreement, inclusion of glutathione accelerated the reaction in a concentration-dependent manner. The implications of abundant high affinity binding sites for Zn2+ within the proteome are considered in relation to their interaction with glutathione in the efficient delivery of Zn2+ to functional binding sites and in the operation of fluorescent zinc sensors as a tool to observe zinc trafficking.


Life Sciences ◽  
1995 ◽  
Vol 57 (14) ◽  
pp. 1367-1373 ◽  
Author(s):  
Tom Sasaki ◽  
Kohsuke Furukata ◽  
Takamasa limori ◽  
Shiro Ikegami ◽  
Shoichiro Ide ◽  
...  

2018 ◽  
Vol 42 (21) ◽  
pp. 17339-17345 ◽  
Author(s):  
Yuxue Liu ◽  
Xinxin Yuan ◽  
Weixian Wang ◽  
Yuqing Wu ◽  
Lixin Wu

EuW10is applied as a sensitive biological probe, which is the first fluorescence detector of HPV E6in vitro.


Sign in / Sign up

Export Citation Format

Share Document