Hierarchical urchin-like peapoded core-shell-structured NiCo2@Ni1/3Co2/3S2@C catalyst with synergistically high-efficiency electrocatalytic properties toward hydrogen evolution reaction

2018 ◽  
Vol 365 ◽  
pp. 351-358 ◽  
Author(s):  
Can Yin ◽  
Ju Deng ◽  
Ling Fang ◽  
Yanwei Wang ◽  
Xiaohui Yang ◽  
...  
2021 ◽  
Author(s):  
Hengyue Xu

Nanoclusters have broad prospects in the application of hydrogen evolution reaction (HER) electrocatalysis. Its high specific surface area, surface geometry effect, electronic properties, and quantum size effect often make the nanoclusters have higher activity than ordinary electrocatalytic materials. However, it is still challenging to design and regulate nanoclusters and make them have better HER performance. In this work, through first-principles calculation from geometric structures to electronic structures, we try to understand the basic physical and chemical properties and HER performance of nanoclusters composed of transition metals Co and Ni. We optimize the electronic structure and promote effective charge transfer by adjusting the size of nanoclusters and constructing core-shell alloying. First-principles studies reveal that the geometric size and electronic structures of Co-Ni nanoclusters can significantly affect the performance of the hydrogen evolution reaction. We found that Co@Ni12 (|ΔGH*|=0.01eV) shows the best HER performance. The Gibbs free energy of hydrogen adsorption of Co-Ni nanoclusters is positively related to the size of the clusters, and the ΔGH* can be adjusted within a certain range by changing the electronic structures of the clusters. Our research helps to understand and design high-efficiency nanocluster electrocatalysts, paving the way for the rational design and synthesis of advanced electrocatalysts for HER.


2020 ◽  
Vol 8 (44) ◽  
pp. 23323-23329
Author(s):  
Jing Hu ◽  
Siwei Li ◽  
Yuzhi Li ◽  
Jing Wang ◽  
Yunchen Du ◽  
...  

Crystalline–amorphous Ni–Ni(OH)2 core–shell assembled nanosheets exhibit outstanding electrocatalytic activity and stability for hydrogen evolution under alkaline conditions.


2021 ◽  
Vol 9 (5) ◽  
pp. 2754-2763
Author(s):  
Kenya Kani ◽  
Hyunsoo Lim ◽  
Andrew E. Whitten ◽  
Kathleen Wood ◽  
Anya J. E. Yago ◽  
...  

The mesoporous RhNi alloy films are synthesized by controlling the concentration of Rh precursor, applied potentials, and pH via the electrochemical co-deposition method with self-assembled polymeric micelles templates for enhancing electrocatalytic properties.


2008 ◽  
Vol 44 (12) ◽  
pp. 1350-1358 ◽  
Author(s):  
V. V. Kuznetsov ◽  
A. A. Kalinkina ◽  
T. V. Pshenichkina ◽  
V. V. Balabaev

2012 ◽  
Vol 48 (7) ◽  
pp. 1063-1065 ◽  
Author(s):  
Irene J. Hsu ◽  
Yannick C. Kimmel ◽  
Xiaoqiang Jiang ◽  
Brian G. Willis ◽  
Jingguang G. Chen

2018 ◽  
Vol 165 (13) ◽  
pp. H866-H871 ◽  
Author(s):  
Jingjing Bai ◽  
Qiangqiang Sun ◽  
Meng Zhou ◽  
Liyuan Wang ◽  
Yuqian Shen ◽  
...  

2018 ◽  
Vol 10 (40) ◽  
pp. 34147-34152 ◽  
Author(s):  
Yiqi Luo ◽  
Xuan Luo ◽  
Geng Wu ◽  
Zhijun Li ◽  
Guanzhong Wang ◽  
...  

Author(s):  
Hanwen Xu ◽  
Jiawei Zhu ◽  
Pengyan Wang ◽  
Ding Chen ◽  
Chengtian Zhang ◽  
...  

Rational design and construction of high-efficiency bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for large-scale hydrogen production by water splitting. Herein, by a...


Sign in / Sign up

Export Citation Format

Share Document