scholarly journals Development of foam-like emulsion phases in porous media flow

Author(s):  
Ahmad Kharrat ◽  
Bianca Brandstätter ◽  
Mostafa Borji ◽  
Rene Ritter ◽  
Pit Arnold ◽  
...  
2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Jia-Hau Ching ◽  
Peilong Chen ◽  
Peichun Amy Tsai

Author(s):  
Tirivanhu Chinyoka ◽  
Daniel Oluwole Makinde

Purpose – The purpose of this paper is to examine the unsteady pressure-driven flow of a reactive third-grade non-Newtonian fluid in a channel filled with a porous medium. The flow is subjected to buoyancy, suction/injection asymmetrical and convective boundary conditions. Design/methodology/approach – The authors assume that exothermic chemical reactions take place within the flow system and that the asymmetric convective heat exchange with the ambient at the surfaces follow Newton’s law of cooling. The authors also assume unidirectional suction injection flow of uniform strength across the channel. The flow system is modeled via coupled non-linear partial differential equations derived from conservation laws of physics. The flow velocity and temperature are obtained by solving the governing equations numerically using semi-implicit finite difference methods. Findings – The authors present the results graphically and draw qualitative and quantitative observations and conclusions with respect to various parameters embedded in the problem. In particular the authors make observations regarding the effects of bouyancy, convective boundary conditions, suction/injection, non-Newtonian character and reaction strength on the flow velocity, temperature, wall shear stress and wall heat transfer. Originality/value – The combined fluid dynamical, porous media and heat transfer effects investigated in this paper have to the authors’ knowledge not been studied. Such fluid dynamical problems find important application in petroleum recovery.


1999 ◽  
Vol 42 (1) ◽  
pp. 109-116 ◽  
Author(s):  
C. M. DaRocha ◽  
L. G. Patruyo ◽  
N. E. Ramírez ◽  
A. J. Müller ◽  
A. E. Sáez

1964 ◽  
Vol 90 (5) ◽  
pp. 13-31
Author(s):  
Robert B. Banks ◽  
Iqbal Ali

Sign in / Sign up

Export Citation Format

Share Document