Multi-product carbon footprint assessment for low-rank coal-based acetylene manufacturing process

2016 ◽  
Vol 112 ◽  
pp. 1676-1682 ◽  
Author(s):  
Yue Mi ◽  
Danxing Zheng ◽  
Xizhuo Jiang
2017 ◽  
Vol 2 (1) ◽  
pp. 59
Author(s):  
Nor Izana Mohd Shobri ◽  
Wan Noor Anira Hj Wan Ali ◽  
Norizan Mt Akhir ◽  
Siti Rasidah Md Sakip

The purpose of this study is to assess the carbon footprint emission at UiTM Perak, Seri Iskandar Campus. The assessment focuses on electrical power and transportation usage. Questionnaires were distributed to the staffs and students to survey their transportation usage in the year 2014 while for electrical consumption, the study used total energy consumed in the year 2014. Data was calculating with the formula by Green House Gas Protocol. Total carbon footprint produced by UiTM Perak, Seri Jskandar Campus in the year 2014 is 11842.09 MTC02' The result of the study is hoped to provide strategies for the university to reduce the carbon footprint emission.


2018 ◽  
Author(s):  
Jayeeta Chakraborty ◽  
◽  
Robert B. Finkelman ◽  
William H. Orem ◽  
Matthew S. Varonka ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 239
Author(s):  
Wei Wang ◽  
Long Liang ◽  
Yaoli Peng ◽  
Maria Holuszko

Micro-Fourier transform infrared (micro-FTIR) spectroscopy was used to correlate the surface chemistry of low rank coal with hydrophobicity. Six square areas without mineral impurities on low rank coal surfaces were selected as testing areas. A specially-designed methodology was applied to conduct micro-FTIR measurements and contact angle tests on the same testing area. A series of semi-quantitative functional group ratios derived from micro-FTIR spectra were correlated with contact angles, and the determination coefficients of linear regression were calculated and compared in order to identify the structure of the functional group ratios. Finally, two semi-quantitative ratios composed of aliphatic carbon hydrogen, aromatic carbon hydrogen and two different types of carbonyl groups were proposed as indicators of low rank coal hydrophobicity. This work provided a rapid way to predict low rank coal hydrophobicity through its functional group composition and helped us understand the hydrophobicity heterogeneity of low rank coal from the perspective of its surface chemistry.


Sign in / Sign up

Export Citation Format

Share Document