Sustainable design of renewable energy supply chains integrated with district heating systems: A fuzzy optimization approach

2016 ◽  
Vol 133 ◽  
pp. 863-885 ◽  
Author(s):  
Şebnem Yılmaz Balaman ◽  
Hasan Selim
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3218
Author(s):  
Pedro Durán ◽  
Herena Torio ◽  
Patrik Schönfeldt ◽  
Peter Klement ◽  
Benedikt Hanke ◽  
...  

There are 1454 district heating systems in Germany. Most of them are fossil based and with high temperature levels, which is neither efficient nor sustainable and needs to be changed for reaching the 2050 climate goals. In this paper, we present a case study for transforming a high to low temperature district heating system which is more suitable for renewable energy supply. With the Carnot Toolbox, a dynamic model of a potential district heating system is simulated and then transformed to a low temperature supply. A sensitivity analysis is carried out to see the system performance in case space constrains restrict the transformation. Finally, an economic comparison is performed. Results show that it is technically possible to perform the transformation until a very low temperature system. The use of decentralized renewable sources, decentralized heat storage tanks and the placement of a heat pump on each building are the key points to achieve the transformation. Regarding the sensitivity analysis, the transformation is worth doing until the seasonal storage and solar collector field sizes are reduced to 60% and 80% of their values in the reference case, respectively. The economic analysis shows, however, that it is hard for highly efficient low temperature renewable based heat networks to compete with district heating systems based on a centralized fossile CHP solution. Thus, though the presented transformation is technically possible, there is a strong need to change existing economic schemes and policies for fostering a stronger promotion of renewable energy policies in the heat sector.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5151 ◽  
Author(s):  
Ieva Pakere ◽  
Dace Lauka ◽  
Dagnija Blumberga

The main aim of this study is to evaluate the results achieved by implementation of different support policies in form of subsidies for energy efficiency improvements and transition to renewable energy sources. The article compares the energy efficiency measures in district heating systems with other support program. In order to assess the effectiveness of implementation of different renewable energy technologies and energy efficiency projects, the levelized costs of saved energy for different support programs were determined. Authors compared different co-financed projects related to replacement of fossil fuel energy sources in district heating (mainly to biomass) and the installation of new biomass boilers, heat pumps, solar collectors and other local technologies in municipal buildings. Results show that financial support for energy efficiency measures in industrial enterprises and district heating systems has been most cost-effective, mainly due to the low co-financing rate (30%) and the high potential for energy savings in different production processes. Authors have identified the blind-spots within the funding allocation for different municipalities, which is not always dedicated to achieved energy savings.


Sign in / Sign up

Export Citation Format

Share Document