Bi-objective vehicle routing problem for hazardous materials transportation

2019 ◽  
Vol 206 ◽  
pp. 976-986 ◽  
Author(s):  
Gustavo A. Bula ◽  
H. Murat Afsar ◽  
Fabio A. González ◽  
Caroline Prodhon ◽  
Nubia Velasco
2021 ◽  
Vol 13 (3) ◽  
pp. 1262
Author(s):  
Zhongxin Zhou ◽  
Minghu Ha ◽  
Hao Hu ◽  
Hongguang Ma

How to reduce the accidents of hazardous materials has become an important and urgent research topic in the safety management of hazardous materials. In this study, we focus on the half open multi-depot heterogeneous vehicle routing problem for hazardous materials transportation. The goal is to determine the vehicle allocation and the optimal route with minimum risk and cost for hazardous materials transportation. A novel transportation risk model is presented considering the variation of vehicle loading, vehicle types, and hazardous materials category. In order to balance the transportation risk and the transportation cost, we propose a bi-objective mixed integer programming model. A hybrid intelligent algorithm is developed based on the ε-constraint method and genetic algorithm to obtain the Pareto optimal solutions. Numerical experiments are provided to demonstrate the effectiveness of the proposed model. Compared with the close multi-depot heterogeneous vehicle routing problem, the average risk and cost obtained by the proposed bi-objective mixed integer programming model can be reduced by 3.99% and 2.01%, respectively. In addition, compared with the half open multi-depot homogeneous vehicle routing problem, the cost is significantly reduced with the acceptable risk.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Bochen Wang ◽  
Qiyuan Qian ◽  
Zheyi Tan ◽  
Peng Zhang ◽  
Aizhi Wu ◽  
...  

This study investigates a multidepot heterogeneous vehicle routing problem for a variety of hazardous materials with risk analysis, which is a practical problem in the actual industrial field. The objective of the problem is to design a series of routes that minimize the total cost composed of transportation cost, risk cost, and overtime work cost. Comprehensive consideration of factors such as transportation costs, multiple depots, heterogeneous vehicles, risks, and multiple accident scenarios is involved in our study. The problem is defined as a mixed integer programming model. A bidirectional tuning heuristic algorithm and particle swarm optimization algorithm are developed to solve the problem of different scales of instances. Computational results are competitive such that our algorithm can obtain effective results in small-scale instances and show great efficiency in large-scale instances with 70 customers, 30 vehicles, and 3 types of hazardous materials.


2018 ◽  
Vol 30 ◽  
pp. 43-52 ◽  
Author(s):  
Valerio Cuneo ◽  
Marialisa Nigro ◽  
Stefano Carrese ◽  
Cosimo Federico Ardito ◽  
Francesco Corman

Sign in / Sign up

Export Citation Format

Share Document