Synthesis, characterization and machine learning based performance prediction of straw activated carbon

2019 ◽  
Vol 212 ◽  
pp. 1210-1223 ◽  
Author(s):  
Wen Jiang ◽  
Xianjun Xing ◽  
Shan Li ◽  
Xianwen Zhang ◽  
Wenquan Wang
2021 ◽  
Vol 31 (2) ◽  
pp. 1-28
Author(s):  
Gopinath Chennupati ◽  
Nandakishore Santhi ◽  
Phill Romero ◽  
Stephan Eidenbenz

Hardware architectures become increasingly complex as the compute capabilities grow to exascale. We present the Analytical Memory Model with Pipelines (AMMP) of the Performance Prediction Toolkit (PPT). PPT-AMMP takes high-level source code and hardware architecture parameters as input and predicts runtime of that code on the target hardware platform, which is defined in the input parameters. PPT-AMMP transforms the code to an (architecture-independent) intermediate representation, then (i) analyzes the basic block structure of the code, (ii) processes architecture-independent virtual memory access patterns that it uses to build memory reuse distance distribution models for each basic block, and (iii) runs detailed basic-block level simulations to determine hardware pipeline usage. PPT-AMMP uses machine learning and regression techniques to build the prediction models based on small instances of the input code, then integrates into a higher-order discrete-event simulation model of PPT running on Simian PDES engine. We validate PPT-AMMP on four standard computational physics benchmarks and present a use case of hardware parameter sensitivity analysis to identify bottleneck hardware resources on different code inputs. We further extend PPT-AMMP to predict the performance of a scientific application code, namely, the radiation transport mini-app SNAP. To this end, we analyze multi-variate regression models that accurately predict the reuse profiles and the basic block counts. We validate predicted SNAP runtimes against actual measured times.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 119
Author(s):  
Vasiliki Summerson ◽  
Claudia Gonzalez Viejo ◽  
Damir D. Torrico ◽  
Alexis Pang ◽  
Sigfredo Fuentes

The incidence and intensity of bushfires is increasing due to climate change, resulting in a greater risk of smoke taint development in wine. In this study, smoke-tainted and non-smoke-tainted wines were subjected to treatments using activated carbon with/without the addition of a cleaving enzyme treatment to hydrolyze glycoconjugates. Chemical measurements and volatile aroma compounds were assessed for each treatment, with the two smoke taint amelioration treatments exhibiting lower mean values for volatile aroma compounds exhibiting positive ‘fruit’ aromas. Furthermore, a low-cost electronic nose (e-nose) was used to assess the wines. A machine learning model based on artificial neural networks (ANN) was developed using the e-nose outputs from the unsmoked control wine, unsmoked wine with activated carbon treatment, unsmoked wine with a cleaving enzyme plus activated carbon treatment, and smoke-tainted control wine samples as inputs to classify the wines according to the smoke taint amelioration treatment. The model displayed a high overall accuracy of 98% in classifying the e-nose readings, illustrating it may be a rapid, cost-effective tool for winemakers to assess the effectiveness of smoke taint amelioration treatment by activated carbon with/without the use of a cleaving enzyme. Furthermore, the use of a cleaving enzyme coupled with activated carbon was found to be effective in ameliorating smoke taint in wine and may help delay the resurgence of smoke aromas in wine following the aging and hydrolysis of glycoconjugates.


2018 ◽  
Vol 113 ◽  
pp. 270-278 ◽  
Author(s):  
Yuyun Zeng ◽  
Jingquan Liu ◽  
Kaichao Sun ◽  
Lin-wen Hu

2021 ◽  
Author(s):  
Ergun Simsek ◽  
Seyed Ehsan Jamali Mahabadi ◽  
Thomas F. Carruthers ◽  
Curtis R. Menyuk

2021 ◽  
Author(s):  
Bharat Kaushik ◽  
Pratap Daphal ◽  
Pratyush Khare ◽  
Sivaprasad Koralla ◽  
Satadru Bera

Sign in / Sign up

Export Citation Format

Share Document