Simultaneous optimization of combined supercritical CO2 Brayton cycle and organic Rankine cycle integrated with concentrated solar power system

2020 ◽  
Vol 266 ◽  
pp. 121927
Author(s):  
Yingzong Liang ◽  
Jiansheng Chen ◽  
Xianglong Luo ◽  
Jianyong Chen ◽  
Zhi Yang ◽  
...  
2017 ◽  
Vol 142 ◽  
pp. 386-394 ◽  
Author(s):  
Jing Li ◽  
Guangtao Gao ◽  
Gang Pei ◽  
Pengcheng Li ◽  
Yuehong Su ◽  
...  

2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Zhen Pan ◽  
Mingyue Yan ◽  
Liyan Shang ◽  
Ping Li ◽  
Li Zhang ◽  
...  

Abstract This paper proposes a new type of Gas Turbine Cycle-supercritical CO2 Brayton/organic Rankine cycle (GT-SCO2/ORC) cogeneration system, in which the exhaust gas from gas-fired plants generates electricity through GT and then the remaining heat is absorbed by the supercritical CO2 (SCO2) Brayton cycle and ORC. CO2 contained in the exhaust gas is absorbed by monoethanolamine (MEA) and liquefied via liquified natural gas (LNG). Introducing thermodynamic efficiencies, thermoeconomic analysis to evaluate the system performance and total system cost is used as the evaluation parameter. The results show that the energy efficiency and exergy efficiency of the system are 56.47% and 45.46%, respectively, and the total cost of the product is 2798.38 $/h. Moreover, with the increase in air compressor (AC) or gas turbine isentropic efficiency, GT inlet temperature, and air preheater (AP) outlet temperature, the thermodynamic efficiencies have upward trends, which proves these four parameters optimize the thermodynamic performance. The total system cost can reach a minimum value with the increase in AC pressure ratio, GT isentropic efficiency, and AC isentropic efficiency, indicating that these three parameters can optimize the economic performance of the cycle. The hot water income increases significantly with the increase in the GT inlet temperature, but it is not cost-effective in terms of the total cost.


2018 ◽  
Vol 149 ◽  
pp. 420-426 ◽  
Author(s):  
Andreas Zourellis ◽  
Bengt Perers ◽  
Jes Donneborg ◽  
Jelica Matoricz

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Ali Sulaiman Alsagri ◽  
Andrew Chiasson ◽  
Mohamed Gadalla

The aim of this study was to conduct thermodynamic and economic analyses of a concentrated solar power (CSP) plant to drive a supercritical CO2 recompression Brayton cycle. The objectives were to assess the system viability in a location of moderate-to-high-temperature solar availability to sCO2 power block during the day and to investigate the role of thermal energy storage with 4, 8, 12, and 16 h of storage to increase the solar share and the yearly energy generating capacity. A case study of system optimization and evaluation is presented in a city in Saudi Arabia (Riyadh). To achieve the highest energy production per unit cost, the heliostat geometry field design integrated with a sCO2 Brayton cycle with a molten-salt thermal energy storage (TES) dispatch system and the corresponding operating parameters are optimized. A solar power tower (SPT) is a type of CSP system that is of particular interest in this research because it can operate at relatively high temperatures. The present SPT-TES field comprises of heliostat field mirrors, a solar tower, a receiver, heat exchangers, and two molten-salt TES tanks. The main thermoeconomic indicators are the capacity factor and the levelized cost of electricity (LCOE). The research findings indicate that SPT-TES with a supercritical CO2 power cycle is economically viable with 12 h thermal storage using molten salt. The results also show that integrating 12 h-TES with an SPT has a high positive impact on the capacity factor of 60% at the optimum LCOE of $0.1078/kW h.


Sign in / Sign up

Export Citation Format

Share Document